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1.1.1 Introduction

Nobody is Perfect

1. Introduction

1.1 Organization

1.1.1 Use of the Hyperscript

’ There are anumber of special modules that you should use for navigating through the Hyperscript:

Detailed table of contents of the main part (called "backbone")

Matrix of Modules; showing all modulesin context. Thisis your most important “Metafile"!!!

Indexlist; with direct links to the words as they appear in the modules. All words contained in the
indexlist are marked black and bold in the text.

List of names; with direct links to the words as they appear in the modules. All nhames contained in
the name list are marked red and bold in the text.

List of abbreviations; with direct links to the symbols and abbreviations as they appear in the
modules

Dictionary; giving the German translation of not-so-common English words; again with direct links

to the words as they appear in the modules. All words found in the dictionary are marked italic,
black, and bold. The German trand ation appears directly on the page if you move the cursor on it

’ All lists are automatically generated, so errors will occur.

Note: Italics and red emphasizes something directly, without any cross reference to some list.

All numbers, chemical symbols etc. are written with bold character. Thereis no particular reason
for this except that it looks better to me.

Variablesin formulas etc. are written in italics asit should be - except when it gets confusing. Isv a
v asin velocity initalics, or the greek v? Y ou get the point.

1.1.2 What it is All About

’ The lecture course "Defectsin Crystals' attempts to teach al important structural aspects (as opposed to
electronic aspects) of defectsin crystals. It coversal types of defects (from simple vacanciesto phase
boundaries; including more complicated point defects, dislocations, stacking faults, grain boundaries),
their role for properties of materials, and the analytical tools for detecting defects and measuring their
properties
If you are not too sure about the role of defects in materials science, turn to the preface.

If you want to get an idea of what you should know and what will be offered, turn to chapter 2
’ A few more general remarks

The course isfar to short to really cover the topic appropriately, but still overlaps somewhat with
other courses. The reasons for thisis that defects play arole amost everywhere in materials science
S0 many courses make references to defects.
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1.1.1 Introduction

The course has a special format for the exercise part similar to "Electronic Materials', but abit less

formalized. Conventional exercises are partially abandoned in favor of "professional” presentations
including a paper to topics that are within the scope of the course, but will not be covered in regular
class. A list of topicsisgivenin chapter 1.2.1

’ The intention with this particular format of exercisesis:

Learn how to research an unfamiliar subject by yourself.

Learn how to work in ateam.

Learn how to make a scientific presentation in alimited time (Some hints can be found in the link)
Learn how to write a coherent paper on awell defined subject.

Learn about a new (and hopefully exciting) topic concerning "defects’.

’ Accordingly, the contents and the style of the presentation will also be discussed to some extent. The
emphasize, however, somewhat deviating from "Electronic Materials’, is on content. For details use the
link.

1.1.3 Relation to Other Courses

’ The graduate course "Defectsin Crystals' interacts with and draws on several other coursesin the
materials science curriculum. A certain amount of overlap is unavoidable. Other courses of interest are

’ Introduction to Materials Sciencel + 11 ("MaWwi | + I1"; Prof. Foll)

Required for al "Dipl.-Ing." students; 3rd and 4th semester

Undergraduate course, where the essentials of crystals, defects in crystals, band structures,
semiconductors, and properties of semiconductors up to semi-quantitave | -V-characteristics of
p-n-junctions are taught.

For details of contents refer to the Hyperscripts (in german)
MaWwi |
MaWwi Il

’ Physical Metallurgy | ("Metals 1", Prof. Faupel)
Includes properties of dislocations and hardening mechanisms

’ Sensorsl|

Will, among other topics, treat point defects equilibria and reactions in the context of sensor
applications

’ Materials Analytics| + 11 ("Analytics| + I1", Prof. Jager)

Coversin detail some (but not all) of the experimental techniques, e.g. Electron Microscopy
’ Solid State Physics| + I ("Solid State | + 1" Prof. Faupel)

Covers the essentials of solid state physics, but does not cover structural aspects of defects.

’ Semiconductor s (Prof. Foll)

Covers "everything" about semiconductors except Si technology (but other uses of Si, some
semiconductor physics, and especially optoel ectronics). Optpel ectronics needs heterojunctions and
heterojunctions are plagued by defects.
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1.1.1 Introduction

1.1.4 Books

’ Consult the list of books
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1.1.2 Required Background Knowledge

1.1.2 Required Background Knowledge

’ M athematics

Not much. Familiarity with with basic undergraduate math will suffice.

’ General Physics and Chemistry

Familiarity with thermodynamics (including statistical thermodynamics), basic solid state physics,
and general chemistry is sufficient.

’ M aterials Science

Y ou should know about basic crystallography and thermodynamics. The ideais that you emerge
from this course really understanding structural aspects of defectsin some detail. Since experience
teaches that abstract subjects are only understood after the second hearing, you should have heard a
little bit about point defects, dislocations, stacking faults, etc. before.
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1.1.3 Organization

’ Everything of interest can be found in the "Running Term" files

Index to running term
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1.2.1 Seminar and Exercises

1.2 Exercises and Seminar

1.2.1 General Topics

’ This module contains brief general information about exercises and the seminar.

Whatever is really happening in the running term, will be found in the links

e Running Term
« Seminar topics
’ Asfar as exercise classes take place, the questions will be either from the Hyperscript or will be
constructed along similar lines.

’ Asfar asthe seminar part is concerned: Which group will deal with which topic will be decided in the
first week of the class.

Y ou may choose your subject from the list of topics, or suggest a subject of your interest which is
not on the list.

Presentation will be clustered at the second half of the term (or, if so demanded, in the semester
break); the beginning date depends on the number of participants

’ For most topics, you can sign out some materials to get you started; there is al'so always helpavailable
from the teaching assistants.
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1.2.2 Rules for Seminar

1.2.2 Rules for Seminar

General Rules

’ Teams:

Two (or, as an exception), three students form a team.

The team decides on the the detailed outline of the presentation, collects the material and writes the
paper.

The delivery of the presentation can be done in any way that divides the time about equally between
the members of the team.

Every team has an advisor who is always available (but do call ahead).
’ Selection of Topics and Schedules

Therelevant list of topics available for the current term will be presented and discussed at the first
few weeks of the lecture class.

Y ou may suggest your own topic.

’ Preparation of the Presentation

Starting material will be issued in the second week of the course, but it is the teams responsibility to
find the relevant literature.

The teams should consult their advisor several weeks prior to the presentation and discuss the
outline and the contents of the presentation.

Presentation and Paper
’ Language

The presentation and the paper should be given in English language. Exceptions are possible upon
demand; but vuegraphs must be in English without exception. Language and writing skills will not
influence the grading.

Papers must be handed in at the latest one day before the presentation in an electronic format
(preferably html), and as a copy-ready paper. Very good papers written in HTML will be included
in the hyperscript.

Copiesfor the other students will be made and issued by the lecture staff

’ Papers that are handed in at |east one week before the presentation will be corrected with respect to
language (this might improve the copies you hand out!)
Presentation

The presentations must not exceed 45 min. (For exceptions, ask your advisor).

Presentations will be filmed if so desired (tell your advisor well ahead of time). The video is only
available to the speakers.

The presentation is followed by a discussion (10 - 15 min.) The discussion leader (usually the
advisor) may ask questions to the speaker and the audience.

file:///L|/hyperscripts/def_en/kap_1/backbone/rl_2_2.html [02.10.2007 16:16:54]


file:///L|/hyperscripts/def_en/running_term/seminar_topics.html

1.3.1 General Classification of Defects

1.3 Defects, Materials and Products

1.3.1 General Classification of Defects

’ Crystal lattice defects (defects in short) are usually classified according to their dimensions. Defects as
dealt with in this course may then be classified as follows:

’ O-dimensional defects

We have "point defects’ (on occasion abbreviated PD), or, to use a better but unpopular name,
"atomic size defects” .

Most prominent are vacancies (V) and inter stitials (i). If we mean self-inter stitials (and you
should be careful with using the name interstitials indiscriminately), these two point defects (and if

you like, small agglomerates of these defects) are the only possibleintrinsic point defectsin
element crystals.

If we invoke extrinsic atoms, i.e. impurity atomson lattice sites or interstitial sites, we have a
second class of point defects subdivided into interstitial or substitutional impurity atoms or
extrinsic point defects.

In slightly more complicated crystals we also may have mixed-up atoms (e.g. a Ga atom on an As
sitein aGaAs crystal) or antisite defects

’ 1-dimensional Defects
Thisincludes all kinds of dislocations; for example:

Perfect dislocations, partial dislocations (always in connection with a stacking fault), dislocation
loops, grain boundary and phase boundary dislocations, and even

Dislocationsin quasicrystals.
’ 2-dimensional Defects
Here we have stacking faults (SF) and grain boundariesin crystals of one material or phase, and
Phase boundaries and afew special defects as e.g. boundaries between ordered domains.
’ 3-dimensional Defects
Thisincludes: Precipitates, usually involving impurity atoms.

Voids (little holes, i.e. agglomerates of vacanciesin three-dimensional form) which may or may not
be filled with agas, and

Special defects, e.g. stacking fault tetrahedra and tight clusters of dislocations.

If you understand German, you will find an elementary introduction to all these topics in chapter 4 of the
"Materialwissenschaft 1" Hyperscript
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1.3.2 Materials Properties and Defects

1.3.2 Materials Properties and Defects

Material Properties and Defects

’ Defects determine many properties of materials (those properties that we call "structur e sensitive

properties"). Even properties like the specific resistance of semiconductors, conductance in ionic
crystals or diffusion propertiesin general which may appear as intrinsic properties of a material are
defect dominated - in case of doubt by the intrinsic defects. Few properties - e.g. the melting point or the
elastic modulus - are not, or only weakly influenced by defects.

’ To give some flavor of the impact of defects on properties, afew totally subjective, if not speculative
points will follow:

Generaly known are: Residual resistivity, conductivity in semiconductors, diffusion of impurity
atoms, most mechanical properties around plastic deformation, optical and optoel ectronic
properties, but we also have :

Crystal growth, recrystallization, phase changes.
Corrosion - a particularly badly understood part of defect science.

Reliability of products, lifetimes of minority carriers in semiconductors, and lifetime of products
(e.g. chips). Think of electromigration, cracksin steel, hydrogen embrittlement.

Properties of quantum systems (superconductors, quantum Hall effect)
Evolution of life (defectsin DNA "crystals™)

’ A large part of the worlds technology depends on the manipulation of defects. All of the "metal bending
industry”; including car manufacture, but also all of the semiconductor industry and many others.

Properties of Defects
’ Defects have many properties in themselves. We may ask for:

Sructural properties: Where are the atoms relative to the perfect reference crystal?
Electronic properties: Where are the defect states in a band structure?

Chemical properties: What is the chemical potential of a defect? How does it participate in
chemical reactions, e.g. in corrosion?

Scattering properties: How does a defect interact with particles (phonons, photons of any energy,
electrons, positrons, ...); what is the scattering cross section?

Thermodynamic properties. The question for formation enthal pies and -entropies, interaction
energies, migration energies and entropies, ...

’ Despite intensive research, many questions are still open. Thereisacertain irony in the fact that point
defects are least understood in the material where they matter most: In Silicon!

Goals of the course
’ This course emphasi zes structural and thermodynamic properties. Y ou should acquire:

A good understanding of defects and defect reactions.
A rough overview of important experimental tools.

Some appreciation of the elegance of mother nature to make much (you, crystals, and everything
else) out of little (92 elements and a bunch of photons).
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1.3.3 The larger View and Complications

1.3.3 The larger View and Complications

Looking More Closely at Point Defects

This subchapter means to show that even the seemingly most simple defects - vacancies and interstitials
- can get pretty complex in real crystals. Thisis already true for the most simplereal crystal, the fcc
|attice with one atom as a base, and very true for fcc lattices with two identical atoms asabase, i.e. Si or
diamond. In really complicated crystals we have at least as many types of vacancies and interstitials as
there are different atoms - it's easy to |ose perspective.
To givejust two examples of real life with point defects: In the seventies and eighties a bitter war
was fought concerning the precise nature of the self-interstitial in elemental fcc crystals. The main
opponents where two large German research institutes - the dispute was never really settled.
Since about 1975 we have a world-wide dispute still going on concerning the nature of the intrinsic
point defectsin Si (and pretty much all other important semiconductors). We learn from this that
even point defects are not easy to understand.
’ Y ou may consider this sub-chapter as an overture to the point defect part of course: Some themes

touched upon here will be be taken up in full splendor there. Now lets look at some phenomena related
to point defects

’ We start with a simple vacancy or interstitial in (fcc) crystals which exists in thermal equilibrium and
ask afew questions (which are mostly easily extended to other types of crystals):

Theatomic structure

’ What is the atomic structure of point defects? This seems to be an easy question for vacancies - just
remove an atom!
But how "big", how extended is the vacancy? After al, the neighboring atoms may be involved too.

Nothing requires you to have only simple thoughts - lets think in a complicated way and make a
vacancy by removing 11 atoms and filling the void with 10 atoms - somehow. Y ou have a vacancy.
What is the structure now?

How about interstitials? Lets not be unsophisticated either. Here we could fill our 11-atom-hole
with 12 atoms. We now have some kind of "extended" interstitial? Does this happen? (Who knows,
its possibly true in Si). How can we discriminate between "localized" and "extended" point defects?

With interstitials you have several possibilities to put them in alattice. Y ou may choose the
dumbbell configuration, i.e. you put two atoms in the space of one with some symmetry conserved,
or you may put it in the octahedra or tetrahedra interstitial position. Perhaps surprisingly, thereis
still one more possibility:

The "crowdion", which is supposed to exist as a metastable form of interstitials at low temperatures
and which was the subject of the "war" mentioned above.

Then we have the extended inter stitial made following the general recipe given above, and which
is believed by some (including me) to exist at high temperaturesin Si. Lets see what thislooks like:
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1.3.3 The larger View and Complications
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’ Next, we may have to consider the charge state of the point defects (important in semiconductors and
ionic crystals).
Point defectsin ionic crystals, in general, must be charged for reasons of charge neutrality. You

cannot, e.g. form Na-vacancies by removing Na* ions without either giving the resulting vacancy a
positive charge or depositing some positive charges somewhere el se.

In semiconductors the charge state is coupled to the energy levelsintroduced by a point defects, its
position in the bandgap and the prevalent Fermi energy. If the Fermi energy changes, so does,

perhaps, the charge state.

’ Now we might have a coupling between charge state and structure. And this may lead to an athermal
diffusion mechanisms,; something really strange (after Bourgoin).

Just an arbitrary exampleto illustrate this: The neutral interstitial sitsin the octahedra site, the
positively charged one in the tetrahedra site (see below). Whenever the charge states changes (e.g.
because its energy level is close to the Fermi energy or because you irradiate the specimen with
electrons), it will jump to one of the nearest equivalent positions - in other word it diffuses
independently of the temperature.

’ These examples should convince you that even the most simplest of defects - point defects - are not so
simple after al. And, so far, we have (implicitly) only considered the ssmple case of thermal
equilibrium! This leads usto the next paragraph:

But isthere thermal equilibrium?
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1.3.3 The larger View and Complications

’ The list above gives an idea what could happen. But what, actually, does happen in anideal crystal in
thermal equilibrium?
While we believe that for common fcc metal this question can be answered, it is still open for many
important materials, including Silicon. Y ou may even ask: |s there thermal equilibriumat all?

Consider: Right after anew portion of agrowing crystal crystallized from the melt, the
concentration of point defects may have been controlled by the growth kinetics and not by
equilibrium. If the system now tries to reach equilibrium, it needs sources and sinks for point
defects to generate or dump what is required. Extremely perfect Si crystals, however, do not have
the common sources and sinks, i.e. dislocations and grain boundaries. So what happens? Not totally
clear yet. There are more open questions concerning Si; activate the link for a sample.

’ Well, while there may be some doubt as to the existence of thermal equilibrium now and then, thereis
no doubt that there are many occasions where we definitely do not have thermal equilibrium. What does
that mean with respect to point defects?

Non-equilibrium

’ Global equilibrium, defined by the absolute minimum of the free enthalpy of the system is often

unattainable; the second best solution, local equilibrium where some local minimum of the free enthal py
must suffice. Y ou always get non-equilibrium, or just alocal equilibrium, if, starting from some
equilibrium, you change the temperature.

Reaching anew local equilibrium of any kind needs kinetic processes where point defects must
move, are generated, or annihilated. A typical picture illustrating this shows a potential curve with
various minimaand maxima. A state caught in alocal minima can only change to a better minima
by overcoming an energy barrier. If the temperature T does not supply sufficient thermal energy
kT, global equilibrium (the deepest minimum) will be reached slowly or - for all practical purposes
- never.

global equilibrium

One reaction helpful for reaching a minimain cases where both vacancies and interstitials exist in
non-equilibrium concentrations (e.g. after lowering the temperature or during irradiation
experiments) could be the mutual annihilation of vacancies and interstitials by recombination. The
potential barrier that must be overcome seems to be only the migration enthalpy (at least one
species must be mobile so that the defects can meet).

There might be unexpected new effects, however, with extended defects. If an localized interstitial
meets an extended vacancy, how isit supposed to recombine? There isno local empty space, just a
thinned out part of the lattice. Recombination is not easy then. The barrier to recombination,
however, in akinetic description, isnow an entropy barrier and not the common energy barrier.
’ Things get really messy if the generation if point defects, too, is a non-equilibrium process - if you
produce them by crude force. There are many ways to do this:
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1.3.3 The larger View and Complications

Crystal Growth As mentioned above, the incorporation of point defectsin a growing interface
does not have to produce the equilibrium concentration of point defects. An "easy to read" paper to
this subject (in German) is available in the Link

Quenching, i.e. rapid cooling. The point defects become immobile very quickly - alot of sinks are
needed if they are to disappear under these conditions - arather unrealistic situation.

Plastic deformation, especially by dislocation climb, isanon-equilibrium source (or sink) for
point defects. It was (and to some extent still is) the main reason for the degradation of Laser
diodes.

Irradiation with electrons (mainly for scientific reasons), ions (as in ion implantation; a key
process for microel ectronics), neutrons (in any reactor, but also used for neutron transmutation
doping of Si), a-particles (in reactors, but aso in satellites) produces copious quantities of point
defects under "perfect” non-equilibrium conditions.

Oxidation of Si injects S interstitials into the crystal.
Nitridation of Si injects vacanciesinto the crystal.

Reactive | nterfaces (asin the two examples above), quite generally, may inject point defects into
the participating crystals.

Precipitation phenomena (always requiring a moving interface) thus may produce point defects as
isindeed the case: (SIO,-precipitation generates, SiC-precipitation uses up Si-interstitials.
Diffusion of impurity atoms may produce or consume point defects beyond needing them as
diffusion vehicles.

’ And all of this may critically influence your product. The Si crystal growth industry, grossing some 8
billion $ ayear, continuously runs into severe problems caused by point defects that are not in
equilibrium.

So-called swirl-defects, sub-distinguished into A-defects and B-defects caused quite some
excitement around 1980 and led the way to the acceptance of the existence of interstitialsin Si.
Presently, D-defects are the hot topics, and it is pretty safe to predict that we will hear of E-defects
yet.

’ Now, most of the exampl% of posa ble complications mentioned here are from pretty recent research
and will not be covered in detail in what follows.

And implicitely, we only discussed defects in monoatomic crystals - metals, simple

semiconductors. In more complicated crystals with two or more different atoms in the base, things
can get really messy - look at chapters 2.4 to get an idea.

Anyway, you should have the feeling now that acquiring some knowledge about defectsis not
wasted time. Materials Scientists and Engineers will have to understand, use, and battle defects for
many more years to come. Not only will they not go away - they are needed for many products and
one of the major "buttons’ to fiddle with when designing new materials
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2. Properties of Point Defects

2.1 Intrinsic Point Defects and Equilibrium

2.1.1 Simple Vacancies and Interstitials

Basic Equilibrium Considerations

’ We start with the most simple point defects imaginable and consider an uncharged vacancy in asimple
crystal with a base consisting of only one atomic species - that means mostly metals and

semiconductors.
Some call thiskind of defect "Schottky Defect, although the original Schottky defects were
introduced for ionic crystals containing at least two different atoms in the base.

We call vacancies and their "opposites’, the self-intersitals, intrinsic point defects for starters.
Intrinsic simple means that these point defects can be generated in the ideal world of the ideal
crystal. No external or extrinsic help or stuff is needed.

’ To form one vacancy at constant pressure (the usual situation), we have to add some free enthal py Gg to
the crystal, or, to use the name commonly employed by the chemical community, Gibbs ener gy.
G, the free enthal py of vacancy formation, is defined as

GF:HF—T'SF

The index F always means "formation"; Hg thus is the formation enthalpy of one vacancy, Sg the
formation entropy of one vacancy, and T is always the absol ute temperature.

’ The formation enthal py Hg in solidsis practically indistinguishable from the formation energy Eg
(sometimes written Ug) which hasto be used if the volume and not the pressure is kept constant.

The formation entropy, which in elementary considerations of point defects usually is omitted, must
not be confused with the entropy of mixing or configurational entropy; the entropy originating from
the many possibilities of arranging many vacancies, but is a property of a single vacancy resulting
from the disorder introduced into the crystal by changing the vibrational properties of the
neighboring atoms (see ahead).

’ The next step consists of minimizing the free enthalpy G of the complete crystal with respect to the
number ny, of the vacancies, or the concentration ¢y, = ny, /N, if the number of vacanciesisreferred to
the number of atoms N comprising the crystal. We will drop the index "V*" from now now on because
this consideration is valid for all kinds of point defects, not just vacancies.

The number or concentration of vacanciesin thermal equilibrium (which is not necessarily
identical to chemical equilibrium!) then follows from finding the minimum of G with respect to n
(orc),i.e

G a
— =—Ugy+6,+6,0=0
on  onU 0

with Gy = Gibbs energy of the perfect crystal, G; = Work (or energy) needed to generate n
vacancies=n - Gg, and G, = —T - S With Seops = configurational entropy of n vacancies,
or, to use another expression for the same quantity, the entropy of mixing n vacancies.
’ We note that the partial derivative of G with respect to n, which should be written as [0G/0n] eyerything
dse=cong. 1S Dy definition, the chemical potential p of the defects under consideration. Thiswill
become important if we consider chemical equilibrium of defectsin, e.g., ionic crystals.
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2.1.1 Simple Vacancies and Interstitials

’ The partial derivatives are easily done, we obtain

0Gq

— =0

on

0G

.—1 = GF

on

which finally leads to

0G 0Scont
—_— = GF -7 - on =0
on on

chemical potential in equilibrium

’ We now need to calculate the configurational entropy S.ons by using Boltzmann's famous formula

S = kB'InP

With kg = k = Boltzmanns constant and P = number of different configurations (= microstates) for the same
macr ostate.
The exact meaning of P is sometimes a bit confusing; activate the link to see why.

’ A macrostate for our caseis any possible combination of the number n of vacancies and the number N of atoms
of the crystal. We abtain P(n) thus by looking at the number of possibilitiesto arrange n vacancies on N sites.

Thisisastandard situation in combinatorics; the number we need is given by the binomial coefficient; we
have

ONO_ N!

P = —
Ond (N -ny-nt

If you have problems with that, look at exercise 2.1-1 below.

’ The calculation of 0S/on now is straight forward in principle, but analytically only possible with two
approximations:

1. Mathematical Approximation: Use the Stirling formulain its simplest version for the factorials, i.e.
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2.1.1 Simple Vacancies and Interstitials

| Inx! = x-Inx

2. Physical Approximation: There are always far fewer vacancies than atoms; this means

| N-n=N
’ As afirst result we obtain "approximately”
0S N
T-— = KT:-In—
on n

’ If you have any doubts about this point, you should do the following exercise.

| Exercise 2.1-1

| Derive the Formulafor ¢y

’ With n/N = ¢,, = concentration of vacancies as defined before, we obtain the familiar formula

Gr
Cy = exp——
or,usng G =Hg-T S
Sk HE
Cy =exp — -exp——
k KT

’ For self-inter stitials, exactly the same formula applies if we take the formation energy to be now the
formation energy of a self-interstitial.

’ It goes without saying (I hope) that the way you look at equations like thisisviaan Arrheniusplot. In
the link you can play with that and refresh your memory

Instead of plotting c/(T) vs. T directly asin the |eft part of the illustration below, you plot the
logarithm Ig[c,/(T)] vs. 1/T as shown on the right.
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2.1.1 Simple Vacancies and Interstitials

In the resulting "Arrhenius plot" or "Arrhenius diagram” you will get a straight line. The (negative)
slope of this straight line is then "activation™ ener gy of the process you are looking at (in our case
the formation energy of the vacancy), the y-axis intercept gives directly the pre-exponential factor.

Ig Cy

’ Compared to simple formulas in elementary courses, the factor exp(Sg/k) might be new. It will be
justified below.

’ Obtaining this formula by shuffling all the factorials and so onisis not quite as easy asit looks - lets do
alittle fun exercise

’ Exercise 2.1-2
| Find the mistake!

’ Like always, one can second-guess the assumptions and approximations. Are they really justified? When do they
break down?

The reference enthalpy G of the perfect crystal may not be constant, but dependent on the chemical
environment of the crystal sinceit isin fact asum over chemical potentialsincluding all constituents that
may undergo reactions (including defects) of the system under consideration. The concentration of oxygen
vacancies in oxide crystals may, e.g., depend on the partial pressure of O, in the atmosphere the crystal
experiences. Thisis one of the working principles of lonics as used for sensors. Chapter 2.4 has more to say
to that.

The simple equilibrium consideration does not concern itself with the kinetics of the generation and
annihilation of vacancies and thus makes no statement about the time required to reach equilibrium. We also
must keep in mind that the addition of the surplus atoms to external or internal surfaces, dislocations, or
other defects while generating vacancies, may introduce additional energy terms.

There may be more than one possibility for avacancy to occupy alattice site (for interstitials thisis more
obvious). This can be seen as a degeneracy of the energy state, or as additional degrees of freedom for the

combinatorics needed to calculate the entropy. In general, an additional entropy term has to be introduced.
Most generally we obtain

with Z4 or Zq = partition functions of the system with and without defects, respectively. Thelink (in
German) gets you to ashort review of statistical thermodynamics including the partition function.
’ Letslook at two examples where this may be important:

The energy state of avacancy might be "degenerate”, because it is charged and has trapped an electron that
has a spin which could be either up or down - we have two, energetically identical "versions' of the vacancy
and Zy4/Zy = 2 in this case.

A double vacancy in abcc crystals has more than one way of sitting at one lattice position. Thereisa
preferred orientation along <111>, and Zy/Zy = 4 in this case.
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2.1.1 Simple Vacancies and Interstitials

Calculation and Physical M eaning of the For mation Entropy

’ The formation entropy is associated with a single defect, it must not be mixed up with the entropy of mixing

resulting from many defects.
It can be seen as the additional entropy or disorder added to the crystal with every additional vacancy. There
is disorder associated with every single vacancy because the vibration modes of the atoms are disturbed by
defects.
Atoms with avacancy as a neighbour tend to vibrate with lower frequencies because some bonds, acting as
"springs’, are missing. These atoms are therefore less well localized than the others and thus more
"unorderly" than regular atoms.

’ Entropy residing in lattice vibrations is nothing new, but quite important outside of defect considerations, too:

Several bce element crystals are stable only because of the entropy inherent in their lattice vibrations. The —
TSterm in the free enthal py then tends to overcompensate the higher enthal py associated with non
close-packed lattice structures. At high temperatures we therefore find a tendency for a phase change
converting fcc lattices to bec lattices which have "softer springs’, lower vibration frequencies and higher
entropies. For details compare Chapter 6 of Haasens book.

’ The calculation of the formation entropy, however, isabit complicated. But the result of this calculation is quite
simple. Here we give only the essential steps and approximations.
First we describe the crystal as a sum of harmonic oscillators - i.e. we use the well-known harmonic
approximation. From quantum mechanics we know the energy E of an harmonic oscillator; for an oscillator

number i and the necessary quantum number n we have

hw,
Ein=— -(n+12)
21T

’ We are going to derive the entropy from the all-encompassing partition function of the system and thus have to
find the correct expression.
The partition function Z; of one harmonic oscillator as defined in statistical mechanicsis given by

hw - (n+%)
21t kT

The partition function of the crystal then is given by the product of all individual partition function of the p =
3N oscillators forming a crystal with N atoms, each of which has three degrees of freedom for oscillations.

We have

’ From statistical thermodynamics we know that the free energy F (or, for solids, in avery good approximation
aso the free enthalpy G) of our oscillator ensemble which we take for the crystal is given by
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2.1.1 Simple Vacancies and Interstitials

Ohay how, O
F=-KkT-InZ=kT 50— + Ingl— exp——BD
T CATKT oriT H

’ Likewise, the entropy of the ensemble (for const. volume) is

oF
oT

’ Differentiating with respect to T yields for the entropy of our - so far - ideal crystal without defects:

hoo
0 4 heo 21 - KT 0
S=Kk z[j—lnml—exp ot 0
w -1
2 - KT

Now we consider a crystal with just one vacancy. All eigenfrequencies of all oscillators change from wy to a new

as yet undefined value w';. The entropy of vibration now isS.
The formation entropy Sg of our single vacancy now can be defined, it is

Ss=S -8

i.e. the difference in entropy between the perfect crystal and a crystal with one vacancy.
It is now time to get more precise about the wy, the frequencies of vibrations. Fortunately, we know some good
approximaitons:

At temperatures higher then the Debye temper atur e, which is the interesting temperature region if one
wants to consider vacancies in reasonabl e concentrations, we have

h
—oq« kT

h(A)'i
— << kT
21

which means that we can expand hw;/2mtinto a series of which we (as usual) consider only the first term.
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’ Running through the arithmetic, we obtain asfinal result, summing over all eigenfrequencies of the crystal

W
szk-_z In

I W

’ This now calsfor alittle exercise:

| Exercise2.1-3
| Do the Math for the formulafor the formation entropy

’ For analytical calculations we only consider next neighbors of a vacancy as contributors to the sum; i.e. we
assume w=w everywhere else. In alinear approximation, we consider bonds as linear springs; missing bonds
change the frequency in an easily calculated way. As aresult we obtain (for all cases where our approximations
are sound):

Sr (singlevacancy) = 0.5k (Cu) to 1.3 k (Au).
Sr (double vacancy) = 1.8 k (Cu) to 2.2 k (Au).

’ These values, obtained by assuming that only nearest neighbors of a vacancy contribute to the formation entropy,
are quite close to the measured ones. (How formation entropies are measured, will be covered in chapter 4).

Reversing the argumentation, we come to a major conclusion:

’ The formation entropy measures the spatial extension of a vacancy, or, more generally, of a zero-dimensional
defect. The larger Sg, the more extended the defect will be because than more atoms must have changed their
vibrations frequencies.

Asarule of thumb (that we justify with alittle exercise below) we have:

Sg = 1k corresponds to atruly atomic defect, Sz = 10k correponds to extended defects disturbing a volume
of about 5 - 10 atoms.

Thisis more easily visualized for interstitials than for vacancies. An "atomic" interstitials can be
"constructed" by taking out one atom and filling in two atoms without changing all the other atoms
appreciably. An interstitial extended over the volume of e.g. 10 atomsis formed by taking out 10 atoms and
filling in 11 atoms without giving preference in any way to one of the 11 atoms - you cannot identify agiven
atom with the interstitial.

’ Vacancies or interstitialsin elemental crystal mostly have formation entropies around 1Kk, i.e. they are "point
like". There is abig exception, however: Si does not fit this picture.
While the precise values of formation enthalpies and entropies of vacancies and interstitialsin Si are still not
known with any precision, the formation entropies are definitely large and probably temperature dependent;

values around 6k - 15k at high temperatures are considered. Historically, thisled Seeger and Chik in 1968
to propose that in Si the self-interstitial is the dominating point defect and not the vacancy asin all other
(known) elemental crystals. This proposal kicked of a mgjor scientific storm; the dust has not yet settled.

| Exercise 2.1-4
| Calculate formation entropies

Multi Vacancies (and Multi - Interstitials by Analogy)
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2.1.1 Simple Vacancies and Interstitials

So far, we assumed that there is no interaction between point defects, or that their density is so low that they
"never" meet. But interactions are the rule, for vacancies they are usually attractive. Thisisrelatively easy to see
from basic considerations.

’ Let'sfirst look at metals:

A vacancy introduces a disturbance in the otherwise perfectly periodic potential which will be screened by
the free electrons, i.e. by arearrangement of the electron density around a vacancy. The formation enthal py
of avacancy is mostly the energy needed for this rearrangement; the elastic energy contained in the
somewhat changed atom positions is comparatively small.

If you now introduce a second vacancy next to to the first one, part of the screening is already in place; the
free enthal py needed to remove the second atom is smaller.

In other word: There is a certain binding enthalpy (but from now on we will cal it energy, like everybody
else) between vacancies in metals (order of magnitude: (0,1 - 0,2) eV).

’ Covalently bonded crystals

The formation energy of avacancy is mostly determined by the energy needed to "break” the bonds. Taking
away a second atom means that fewer bonds need to be broken - again there is a positive binding energy.

’ lonic crystals

Vacancies are charged, this leads to Coulomb attraction between vacancies in the cation or anion sublattice,
resp., and to repulsion between vacancies of the same nature. We may have positive and negative binding
energies, and in contrast to the other cases the interaction can be long-range.
’ The decisive new parameter is the binding ener gy E,\, between two vacancies. It can be defined as above, but
we also can write down akind of "chemical" reaction equation involving the binding energy E,\, (thesignis
positive for attraction):

IV+1V = V,+ Epy

V in this caseis more than an abbreviation, it is the "chemical symbol” for avacancy.

If you have some doubts about writing down chemical reaction equation for "things" that are not atoms, you
are quite right - this needs some special considerations. But rest assured, the above equation is correct, and

you can work with it exactly as with any reaction equation, i.e. apply reaction kinetics, the mass action law,
etc.

’ Now we can do a calculation of the equilibrium concentration of Divacancies. We will do thisin two ways.

’ First Approach: Minimize the total free enthalpy (as before):

First we define afew convenient quantities

Grvy = Hrv) — TSrv)
Hrv) = 2HE@y) — Eov
Srav) = 2Srav) + ASy

With A S, = entropy of association; it isin the order of 1k - 2k in metals. We obtain in complete anal ogy
to single vacancies
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2.1.1 Simple Vacancies and Interstitials

z Sy Hrv)
Cov =~ -&Xp — - exp-—
2 k KT
, Z ASyy Eov
Cov = Cve " - &Xp —— - eXp —
2 kT

The factor z/2 (z = coordination number = number of (symmetrically identical) next neighbors) takesinto
account the different ways of aligning a divacancy on one point in the lattice as already noticed above. We

have z= 12 for fcc, 8 for bcc and 4 for diamond lattices.

’ The formulatells us that the concentration of divacanciesin thermal equilibriumis aways much smaller than the
concentration of single vacancies since ¢, << 1. "Thermal equilibrium" has been emphasized, because in

non-equilibrium things are totally different!
Some typical values for metals close to their melting point are

Civ 104 - 103

106 - 10

Cov

’ In the second approach, we use the mass action law.

With the reversiblereaction 1V + 1V < Vo, + E,, and by using the mass action |aw we obtain

(C1v)? AE
= K(T) = const - exp ——
Cov kT

With AE = energy of the forward reaction (you have to be extremely careful with sign conventions
whenever invoking mass action laws!). This leads to

AE
Cov = (cpv)?-const -exp —
kT

’ In other words: Besides the "const.~1" we get the same result, but in an "easier" way.

The only (small) problem is: Y ou have to know something additional for the determination of reaction
constantsif you just use the mass action law. And that it is not necessarily easy - it involves the concept of
the chemical potential and does not easily account for factors coming from additional freedoms of
orientation. e.g. the factor z/2 in the equation above.

’ The important point in this context is that the reaction equation formalism aso holds for non-equilibrium, e.g.
during the cooling of a crystal when there are too many vacancies compared to equilibrium conditions. In this
case we must consider local instead of global equilibrium, see chapter 2.2.3.

file:///L|/hyperscripts/def_en/kap_2/backbone/r2_1_1.html (9 of 10) [02.10.2007 16:16:55]


file:///L|/hyperscripts/def_en/kap_2/advanced/t2_4_3.html
file:///L|/hyperscripts/def_en/kap_2/advanced/t2_4_4.html
file:///L|/hyperscripts/def_en/kap_2/advanced/t2_4_1.html

2.1.1 Simple Vacancies and Interstitials

’ There would be much more to discuss for single vacancies in simple mono-atomic crystals, e.g. how one could
calulate the formation enthalpy, but we will now progress to the more complicated case of point defectsin
crystals with two different kinds of atomsin the base.

That is not only in keeping with the historical context (where this case came first), but will provide much
food for thought.

| Questionaire
| Multiple Choice questionsto 2.1.1
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2.1.2 Frenkel Defects
2.1.2 Frenkel Defects

’ Frenkel defects are, like Schottky defects, a speciality of ionic crystals. Consult thisillustration modul for pictures and more details.

In fact, the discussion of this defect in AgCI in 1926 by Frenkel more or less introduced the concepts of point defectsin crystals to science.

’ Inionic crystals, charge neutrality requires (as we will see) that defects comein pairswith opposite charge, or at least the sum over the net charge of
all charged point defects must be zero.

"Designer defects" (defects carrying name tags) are special cases of the general point defect situation in non-elemental crystals. Since any ionic
crystal consists of at least two different kinds of atoms, at least two kinds of vacancies and interstitials are possible in principle.
Thermodynamic equilibrium always allows all possible kinds of point defects simultaneously (including charged defects) with arbitrary
concentrations, but always requiring a minimal free enthalpy including the electrostatic energy componentsin this case.
However, if thereis a charge inbalance, el ectrostatic energy will quickly override everything else, as we will see. As a consegquence we need
charge neutrality in total and in any small volume element of the crystal - we have akind of independent boundary condition for equilibrium.
Charge neutrality callsfor at least two kinds of differently charged point defects. We could have more than just two kinds, of course, but again as
we will see, inreal crystals usually two kinds will suffice.

’ One of two simple ways of maintaining charge neutrality with two different point defects is to aways have a vacancy - interstitial pair, a combination

wewill call aFrenkel pair.

The generation of a Frenkel defect is easy to visuaize: A latticeion movesto an interstitial site, leaving a vacancy behind. The ion will always be
the positively charged one, i.e. acation interstitial, because it is pretty much always smaller than the negatively charged one and thusfits better

into the interstitial sites. In other words; its formation enthal py will be smaller than that of a negatively charged interstitial ion. Look at the
pictures to see thisvery clearly.

It may appear that electrostatic forces keep the interstitial and the vacancy in close proximity. While there is an attractive interaction, and close
Frenkel pairs do exist (in analogy to excitons, i.e. close electron-hole pairs in semiconductors), they will not be stable at high temperatures. If the

defects can diffuse, the interstitial and the vacancy of a Frenkel pair will go on independent random walks and thus can be anywhere, they do not
have to be close to each other after their generation.

’ Having vacancies and interstitialsis called Frenkel disorder, it consists of Frenkel pairs or the Frenkel defects.

Frenkel disorder is an extreme case of general disorder; it isprevalent in e.g. Ag - halogen crystals like AgCI. We thus have

nj =Ny = Nep

’ Thisimplies, of course, that vacancies carry a charge; and that isabit of a conceptual problems. For ions as interstitials, however, their chargeis
obvious. How can we understand a charge "nothing"?

Well, vacancies can be seen as charge carriersin analogy to holesin semiconductors. There a missing electron - ahole - is carrying the opposite
charge of the electron.

For avacancy, the same reasoning applies. If aNat latticeion is missing, a positive charge is missing in the volume element that contains the
corresponding vacancy. Since "missing” charges are non-entities, we have to assign a negative charge to the vacancy in the volume element to get
the charge balance right.

Of course, any monoatomic crystal could (and will) have arbitrary numbers of vacancies and interstitials at the same time as intrinsic point
defects; but only if charge consideration are important n; = n,, holds exactly; otherwise the two concentrations are uncorrelated and simply given
by the formulafor the equilibrium concentrations.

Indeed, since the equilibrium concentrations are never exactly zero, all crystalswill have vacancies and interstitials present at the same time, but
since the formation energy of interstitials is usually much larger than that of vacancies, they may be safely neglected for most considerations
(with the big exception of Silicont!).
’ Of course, in biatomic ionic crystals, there could (and will) be two kinds of Frenkel defects: cation vacancy and cation interstitial; anion vacancy and
anion interstitial; but in any given crystal one kind will always be prevalent.
We will take up all these finer pointsin modules to come, but now let's just look at the simple limiting case of pure Frenkel disorder.

Calculation of the Equilibrium Concentration of Frenkel Defects
’ Lets consider asimpleionic crystal, e.g. AgCl (being the paradigmatic crystal for Frenkel defects). With N = number of positive ionsin the lattice and
N' = number of interstitial sites, we obtain
N' = 2N for interstitials in the tetrahedral position
N' = 6N for the dumbbell configuration
N' = .... etc.
The change of the free enthalpy upon forming ngp Frenkel pairsis

N! N'!

t a
AG = Ngp -Hpp — Ngp - TSep — KT - gIn +1In O
0 (N=ny)l-ny! (N =m)!-nil

With Hgp and Sgp being the formation energy and entropy, resp., of a Frenkel pair. The configuration entropy is simply the sum of the entropy
for the vacancy and the interstitial; we wrote ny, and n; to make that clear (even so we already know that ny, = n; = ngp).

’ With the equilibrium condition 0G/on = 0 we obtain for the concentration cgp of Frenkel pairs
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2.1.2 Frenkel Defects
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The factor 1/2 in the exponent comes from equating the formation energy Hep or entropy, resp., with apair of point defects and not with an
individual defect.
’ What isthereality, i.e. what kind of formation enthalpies are encountered? Surprisingly, it is not particularly easy to find measured values; the link,
however, will give some numbers.

’ That was rather straight forward, and we will not discuss Frenkel defects much more at this point. We will, however, show in the next subchapter from
first principles that, indeed, charge neutrality has to be maintained.

Questionaire
Multiple Choice questionsto 2.1.2
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2.1.3 Schottky-Defects
2.1.3 Schottky Defects

’ Schottky- defects use the second simple possibility to maintain charge equilibrium in ionic crystals with two atoms in the base; they consist of the
two possible types of vacancies which automatically carry opposite charge.
Look at theillustrationsin the link for visualizations of Schottky defects as awell as other defectsin ionic crystals.

You may call the single vacancy in metals a Schottky defect, if you like (some do), but that somehow misses the point.

As pointed out in the context of Frenkel defects, the vacancy inionic crystal carries a net charge the same way a hole - a missing electron -
carriesacharge.

’ We have postulated, that charge neutrality must be maintained, but we have not proved it. Moreover, even for equal numbers of oppositely charged
vacancies (or Frenkel defects for that matter), charge neutrality can only be maintained on average; on a scale comparable to the average distance
between the point defects, we must have electrical fields which only (on average) cancel each other for larger volumes.

The total formation energy therefore must contain some electrostatic energy part because we do have electrical fields around single point defects.
The sameistrue for theinterstitialsin Frenkel defects or in the general case of mixed defects, and the consideration we are going to make for
vacancies applies in an analogous way to interstitials, too.

Moreover, the electrical field of one vacancy will be felt by other charged point defects, which means that there is also some electrostatic
interaction between vacancies, or vacancies and other charged point defects. Thisinteraction is stronger and has a much larger range than the
elastic interactions caused by the lattice deformation around a defect.

’ Let'slook at arelatively simple example. Here we are only going through the physical argumentation, the details of the calculations are contained in
thelink.

’ Calling the formation energy of the anion vacancy (= missing anion = positively charged vacancy) H *, the formation energy of the cation vacancy
H -, and the binding energy between close pairs H B, we obtain for AG, the change in free enthal py, upon introducing n*, n—, and nB anion vacancies,
cation vacancies, and vacancy pairs, resp., is

AG = { j HH+-n+(D +# Hon(Q) + [H* + H- = HB].nB () + U2p (O V @) - T, Joxaydz

With p(r) = local charge concentration, V(r) = electrical potential, S, = entropy of mixing; r isthe space vector. The usual sum is replaced by an
integral because the electrical potential is asmooth function and not strongly localized.

’ The number of point defectsis now dependent on r. The (non-compensated) electrical charge stems from the charged vacancies, the net electrical
charge density at any point r isthus given by

A = I
pm=e o -mrol

With e being the elementary charge.
’ The electrostatic potential follows from the charge density viathe Poisson eguation, we have

AV@O =-— PO

With & = dielectric constant of the material and g = vacuum constant

’ For equilibrium condition, AG must be minimal, i.e. we have to solve the variation problem

AG =0

for variations of the n's. Using the conventional approximations one obtains solutions being rather obvious on hindsight:
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2.1.3 Schottky-Defects

H* —e-V()

n*(r) = N-exp————
© kT

H-+e-V()

nr)=N-exp-—————
© kT

H*++ H-—HB
KT

nB = N-z-exp

For uncharged vacancies (where the — eV term would not apply), thisis the old result, except that now the divacancy is included.

’ We still must find the electrostatic potential as a function of space. It may be obtained by expressing the charge density now with the formulas for the
charged vacancy densities given above, and then solving Poissons equation. We obtain

e-N 0O H-+e-V( H*-e.v() O
AV(r) =— —— . exp-— —‘) - exp- —(‘[]
€& [ kT kKT O

’ Thisisadifferential equation for the electrostatic potential; the problem now is a purely mathematical one: Solving atricky differential equation.

It is now useful to introduce a"normalized" potential v by shifting the zero point in a convenient manner, and by utilizing a useful abbreviation.
We define

_e:V(r) —05H*+ H")
) kT

2-N-e H+ + H-

—2 = .exp —
X ggg - KT P kT

This gives us asimple looking differential equation for our new quantities

Av () = x2-sinh{v (D}

’ x~1 has the dimension of alength, it is nothing (as it will turn out) but the (hopefully) well known Debye length for our case.

The "simple" differential equation obtained above, however, still cannot be solved easily. We must resort to the usual approximations and linearize,
i.e. use the approximate relation sinh v = v for small v's.

We also need some boundary conditions as always woth differential equations. They must come from the physics of the problem.

The first guess is always to assume an infinite crystal with v = 0 for x = + c. The solutions for an infinite crystal are trivial, however, we
therefore assume a crystal infinitein y- and z-direction, but with a surface in x-direction at x = O; from there the crystal extendsto infinity.

Now we have a one-dimensional problem withr = x. One general solution is (please appreciate that | didn't state "obvious solution™)

Ovg (2 0O vy 2
Vo2 — D=0 + Vot — 0 -&Xp[2X- (X — X
Ox O O x0O

v(x) =
O VO' O
Vo + — - &xp [X - (X = Xp)]
0 X O

with vg = v(x = 0) and vy' = integration constant which needs to be determined.

’ Cool, but we can do better yet:

If we do not want infinities, the divergent term exp [2x(X — Xg)] must disappear for X approaching infinity, this means
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2.1.3 Schottky-Defects

limvix)=0 0O Vg = — —
X — 00 X

O V(X) = 2vg-exp—X X

’ x~1 obviously determines at which distance from a charged surface, or more generally, from any charge, the (normalized) potential (and therefore also
the real potential) decreasesto 1/e - thisis akin to the definition of the Debye length.

For acharged surface and x >> ¥ (i.e. the bulk of the crystal) we obtain v(x >> x) = 0, and therefore

H* + H-

V(r>>x) = =

’ If we substitute V(r) into the equations for the equilibrium concentrations above, we obtain the final equations for the vacany concentrationsin the
case of Schottky defects

H* + H-

nt=n"=N-exp-
P 2kT

i.e. both concentrations are identical, and charge neutrality is maintained!
The energy costs of not doing it would be very large! That is exactly what we expected all along, except that now we proved it.

’ More important,however, we now can calculate what happens if there are electrical fields that do not have their origin in the vacancies themsel ves,
but may originate from fixed charges on e.g. surfaces and interfaces (including grain boundaries or precipitates), or from the outside world.

In this case the concentrations of the defects may be quite different from the quilibrium concentrations in a neighbourhood "Debye Lenght" (= x)
from the fixed charges.

We also see that we have (average) electrical neutrality in the bulk and a statistical distribution of vacancies there, but thisis not necessarily true
in regions within one Debye length X next to an external or internal surface.

’ Charged surfaces thus may change point defect concentrations within about one Debye length. And charged point defects, if they are mobile, may
carry an electrical current or redistribute (and then changing potentials), if surface or interface charges change.

’ Thisisthebasic principle of usingionic conductors (and, to some extent, semiconductors) for sensor applications!

’ The interaction between point defects, the electrical potential and the Debye length may be demonstrated nicely by plotting the relevant curves for
different sets of parameters; this can be done with the following JAVA module.

_

We see that the Debye length as expressed in the formulasis strongly dependent on temperature. Only for high temperatures do we have enough

charged vacancies so that their redistribution can screen a external potential on short distances. For NaCl we have, as an example, the following
values

T[K] Xt[em]
1100 1.45.10~7
900 455107
700 2.83.10-6
500 8.21-10-5
300 2.20-10-1

’ The large values, however, are unrealistic in real crystals, because grain boundaries, other charged defects, and especially impurities must also be
considered in this region; they will always decrease the Debye length.

Questionaire
Multiple Choice questionsto 2.1.3
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2.2.1 Extrinsic Point Defects and Agglomerates

2.2 Extrinsic Point Defects and Point Defect
Agglomerates

2.2.1 Impurity Atoms and Point Defects

’ Consider areal crystal - take even a hyperpure single crystalline Si crystal if you like. It's not perfect! It
just is not. It will always contain some impurities. If the impurity concentration is below the ppm level,
then you will have ppb, or ppt or ppqt (figure that out!), or... - it's just never going to be zero.

The highest vacancy concentration your are going to have in simple metals close to the melting
point is around 10~4 = 100 ppm; in Si it will be far lower. On the other hand, even in the best Si
you will have some ppm of O; (oxygen interstitials) and C;(Carbon substitutionals).

In other words - it is quite likely that besides your intrinsic equilibrium point defects (usually
vacancies) squirming around in equilibrium concentration, you also have comparable
concentrations of various extrinsic non-equilibrium point defects. So the question obvioudly is:
what is going to happen between the vacancies and the "dirt"? How do intrinsic and extrinsic point
defects interact?

’ Let'slook at the impurities first. Essentially, we are talking phase diagrams here. If you know the phase

diagram, you know what happensiif you put increasing amounts of an impurity atom in your crystal.
Turned around: If you know what your impurity "does’, you actually can construct a phase diagram.

However, using the word "impurity” instead of "alloy" implies that we are talking about small
amounts of B in crystal A.

’ The decisive parameter is the solubility of the impurity atom as a function of temperature.

In afirst approximation, the equilibrium concentration of impurity atomsis given by the usua
Arrheniusrepresentation, akin to the case of vacancies or self-interstitials. Thisis often only a
good approximation below the eutectic temperature (if thereis one). Instead of the formation
energies and entropies, you resort to solubility energies and entropies.

Thereisabig difference with intrinsic point defects, however. The concentration of impurity atoms
in agiven crystal is pretty much constant and not a quantity that can find its equilibrium value.
After al, you can neither easily form nor destroy impurity atoms contained in a crystal.

That means that thermal equilibrium is only obtained at one specific temperature, if at all. For all
other temperatures, impurity atoms are either under saturated or over satur ated.

’ Now the obvious: Vacancies, divacancies, interstitials etc. may interact with impurity atoms to form
complexes - provided that there is some attractive interaction. Interactions may be elastic (e.g. the lattice
deformation of abig impurity interstitial will attract vacancies) or electrostatic if the point defects are

charged. Schematically it may look like this:
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2.2.1 Extrinsic Point Defects and Agglomerates
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A impurity - vacancy complex (also known as Johnson complex) issimilar to a divacancy, just one
of the partnersis now an impurity atom. The calculation of the equilibrium concentration of
impurity - vacancy complexes thus proceeds in analogy to the calculations for double vacancies, but

it is somewhat more involved. We obtain (for details use the link).

Z- - oy(T) ASc He
CC=——" "&Xp — "&Xp —
1-z-c¢ k kT

With ¢ = concentration of vacancy-impurity atom complexes, cg = concentration of impurity
atoms, ¢y, = equilibrium concentration of (single) vacancies, and ASi or H¢ = binding entropy or
enthalpy, resp., of the pair. z, again, is the coordination number.

That the coordination number z appears in the equation above is not surprising - after all there are
always z possibilities to form one complex. Note that the term 1 — z - ¢z must be some correction
factor, obviously accounting for the possible case of rather large impurity concentrations cg. Why?
- Well, for small cg, thisterm isjust about 1!

Note also that as far as equilibrium goes, we have a kind of mixed case here. The impurity atoms
have some concentration cg that is not an equilibrium concentration. But if we redefine equilibrium
as the state of crystal plus impurities (essentially we ssimply change the G = Gibbs energy of the
"perfect” crystal in one of our first equations), than the concentration concentration c. of
vacancy-impurity atom complexesis an equilibrium concentration.

’ The equation above for c is quite similar to what we had for the divacancy concentration.

If you forget the "correction factor" for amoment, we have identical exponential terms describing
the binding enthal py, and pre-exponential factorsof z - ¢, - cg for divacanciesand z - ¢, - ¢y, for the
vacancy - impurity complexes.

In both cases the concentrations decreases exponentially with temperature. However, assuming
identical binding enthalpies for the sake of the argument, in an Arrhenius plot the slope for
divacancies would be twice that of vacancy-impurity complexes - | sincerely hope that you can see
why!
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2.2.1 Extrinsic Point Defects and Agglomerates

’ The total vacancy concentration ¢,y (total) (= concentration of isolated vacancies + concentration of
vacancies in the complexes) as opposed to the equilibrium concentration without impurities cqy/(eq) is
given by

cy(total) = cy(eq) + cc

That's what equilbrium means! If impurity atoms snatch away some vacancies that the crystal
"made" in order to bein equilibrium, it just will make some more until equilibrium is restored.

Cc thus can be seen as a correction term to the case of the perfect (impurity free) crystal which
describes the perturbation by impurities. Thisimpliesthat ¢, >> ¢ under normal circumstances.

’ We will find out if thisistrue and more about vacancy - impurity complexesin an exercise.

You don't have to do it all yourself; but at least look at it - it's worth it.

’ Exercise 2.2-1

] Properties of Johnson complexes

’ Questionaire
] Multiple Choice questionsto 2.2.1
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2.2.2 Local and Global Equilibrium

2.2.2 Local and Global Equilibrium

’ Global thermal equilibrium at arbitrary temperatures, i.e. the absolute minimum of the free enthalpy,

can only be achieved if there are mechanisms for the generation and annihilation of point defects.
There must be sour ces and sinks for vacancies and (intrinsic) interstitials that operate with small
activation energies - otherwise it will take along time before global equilibrium will be achieved.

’ At this point it is essential to appreciate that an ideal perfect (= infinitely large) crystal has no sources
and sinks - it can never be in thermal equilibrium. An atom, for example, cannot simply disappear

leaving a vacancy behind and then miraculously appear at the surface, as we assumed in equilibrium
thermodynamics, where it does not matter how a state is reached.

On the other hand, infinitely large perfect crystals do not exist - but semiconductor-grade
dislocation-free single Si crystals with diameters of 300 mm and beyond, and lengths of upto 1 m
are coming reasonably close. They form a special case as far as point defects are concerned.
Otherwise we need other defects - grain boundaries, dislocations, precipitates and so on as sources
and sinks for point defects. And that is what we almost always have in regular metals or ceramics.
’ How agrain boundary can act as source or sink for vacancies is schematically shown in the pictures
below.

It is clear form these drawings that the activation energy (which is not the formation energy of a
vacancy!!) needed to emit (not to form from scratch!) a vacancy from a grain boundary is small.

19,9.6,0.00°00
9,000 0’000 0’00
oooooooﬁ!@boo

00’000 00’0
e'e’e’e’e’s

Net flux of vacancies

Net flux of vacancies

Grain boundary absorbs 1 vacancy, i.e. acts
as sink for one more jump of the proper
atom.

Grain boundary emits 3 vacancies, i.e. acts
as source for one more jump of the 3
proper atoms.

The red arrows indicate the jumps of individual atoms. The flux of the vacanciesis always
opposite to the flux of diffusing atoms.

’ We thus may expect that at sufficiently high temperatures (meaning temperatures large enough to allow
diffusion), we will be able to establish global point defect equilibriumin area (= non-ideal) crystal, but

not really global crystal equilibrium, because a crystal with dislocations and grain boundariesis never at
equilibrium.

’ Sources and sinks are a thus a necessary, but not a sufficient ingredient for point defect equilibrium. We

also must require that the point defects are able to move, there must be some diffusion - or you must
resign yourself to waiting for along time.
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At low temperatures, when all diffusion effectively stops, nothing goes anymore. Equilibrium is
unreachable. For many practical cases however, thisis of no consequence. At temperatures where
diffusion gets sluggish, the equilibrium concentration Cy is s0 low, that you cannot measure it. For

all practical purposesit surely doesn't matter if you really achieve, for example, ¢y = 10714, or if
you have non-equilibrium with the actual concentration ¢ athousand times larger than cy (i.e. ¢ =
10-11), For al practical purposes we have simply ¢ = 0.

At high temperatures, when diffusion is fast, point defect equilibrium will be established very
quickly in al real crystals with enough sources and sinks.

’ The intermediate temperatures thus are of interest. The mobility isnot high enough to allow many point
defects to reach convenient sinks, but not yet too small to find other point defects.

In other words, the average diffusion length or mean distance covered by arandomly diffusing
point defect in the time interval considered, is smaller than the average distance between sinks, but
larger than the average distance between point defects.

’ Global point defect equilibrium as the best solution is thus unattainable at medium temperatures, but
local equilibrium is now the second best choice and far preferable to a huge supersaturation of single
point defects slowly moving through the crystal in search of sinks.

Local equilibrium then simply refers to the state with the smallest free enthal py taking into account
the restraints of the system. The most simple restraint is that the total number of vacanciesin
vacancy clusters of all sizes (from single vacancy to large "voids") is constant. This acknowledges
that vacancies cannot be annihilated at sinks under these conditions, but still are able to cluster.

’ Let usillustrate this with arelevant example. Consider vacanciesin ametal crystal that is cooled down
after it has been formed by casting.

As the temperature decreases, global equilibrium demands that the vacancy concentration decreases
exponentially. Aslong as the vacancies are very mobile, thisis possible by annihilation at internal
sinks.

However, at somewhat |lower temperatures, the vacancies are less mobile and have not enough time
to reach sinks like grain boundaries, but can still cover distances much larger than their average
separation. This means that divacancies, trivacancies and so on can still form - up to large clusters
of vacancies, either in the shape of asmall hole or void, or, in atwo-dimensional form, as small
dislocation loops. Until they become completely immobile, the vacancies will be able to cover a
distance given by the diffusion length L (which depends, of course, on how quickly we cool down).
In other words, at intermediate temperatures small vacancy clusters or agglomerates can be formed.
Their maximum size is given by the number of vacancies within avolume that is more or less given
by L3 - more vacancies are simply not available for any one cluster.

Obvioudly, what we will get depends very much on the cooling rate and the mobility or diffusivity
of the vacancies. We will encounter that again; hereisalink looking a bit ahead to the situation
where we cool down as fast as we can.

’ It remainsto find out which mix of single vacancies and vacancy clusters will have the smallest free
enthal py, assuming that the total number of vacancies - either single or in clusters - stays constant. This
minimum enthal py for the specific restraint (number of vacancies = const.) and a given temperature then
would be the local equilibrium configuration of the system.

’ How do we calculate this? The simplest answer, once more, comes from using the the mass-action law.
We already used it for deriving the equilibrium concentration of the divacancies. And we did not assume
that the vacancy concentration was in global thermal equilibrium! The mass action law isvalid for any
starting concentrations of the ingredients - it ssimply describes the equilibrium concentrations for the set
of reacting particles present. This corresponds to what we called local equilibrium here.

The reaction equation from sub-chapter 2.2.1 was 1V + 1V < V, and in this case thisisavalid

equation for using the mass action law. The result obtained for the concentration of divacancies
with the single vacancy concentration in global thermal equilibrium was
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2.2.2 Local and Global Equilibrium

, Z ASyy Bov
Cov =(Cpy)¢ © — - exp—— - exp —
2 k kT

Don't forget that concentrations here are defined as n/N, i.e. in relative units (e.g. ¢ = 3,5 - 10-9)
and not in absolute units, e.g. ¢ = 3,5 - 1015 cm3,

For arbitrary clusterswith n vacancies(1V + 1V + ... + 1V < V) we obtain in an analogous way
for the concentration c,,, of clusters with n vacancies

ASqy Boy
k KT

Z
Chv = (Cqy)" - E - eXp

with B,y = average binding energy between vacancies in an n-cluster, and c;y, = const.
concentration of the vacancies (and no longer the thermal equilibrium concentration!).

’ The essentia point now isto realize that these equations still work for local equilibrium! They now
describe the local equilibrium of vacancy clustersif afixed concentration of vacanciesis given. The
situation now istotally different from global equilibrium. If we consider divacancies for example, we
have:

’ Global equilibrium:

Coyv(eq) << cyy(eq) ; and cyy(eq) rapidly decreases with decreasing temperatures since ¢qy/(€q)
decreases.

’ Local equilibrium;

Coy isincreasing with decreasing T since ¢y, stays about constant, but we still have the
exp+Bpy/ KT term that increaseswith T

’ Whereas the concentration of clusters may still be small, they now contain most of the vacancies.

Generally speaking, it is always energetically favorable, to put the surplus vacanciesin clusters
instead of keeping them in solid solution if there is no possibility to annihilate them completely. It
thus comes as no surprise that in rapidly cooled down crystals with not to many defects that can act
as sinks, we will find some vacancy clusters at room temperature

’ It also should come as no surprise that the same is true for impurity atoms - vacancy clusters. The
equations governing this kind of point defect agglomeration are, after all, quite similar to the equations

discussed here.

If you now take the extreme case of arather perfect Si single crystal (no sinks for point defects),
where we do not just have vacancies at thermal equilibrium, but aso some relevant concentration of
interstitials, interstitial oxygen and substitutional carbon, you might well wonder what one will find
at room temperature.

WEell - don't wonder! Get to work! It isnot all that clear. And even if that puzzle has been solved
before you reach productive scientisthood, there is always GaAs, or InP, or SIC, or - well, you will
find something left to do, don't worry.

’ Questionaire
| Multiple Choice questionsto 2.1.1
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2.3.1 Point Defects in Semiconductors like Silicon

2.3. Point Defects in Semiconductors like Silicon

2.3.1 General Remarks

’ In all semiconductors, lattice defects change the electronic properties of the material locally, and this
may result in electronic energy states in the band gap of the semiconductor and thisistrue for al kinds
of lattice defects

Semiconductor technology actually depends completely on this fact. Doping a semiconductor, after
all, mostly means the incorporation of (usually) substitutional extrinsic point defectsin defined
concentrations in defined regions of the crystal - we have B, Asand P for Si.

Our extrinsic point defects now exist in two states: we have some concentration [P]0 of e.g. a
neutral donor like P and some concentration [P]* of ionized donors; and [P]0 + [P]* = [Py], the
total concentration of P holds at al conditions.

The concentration [P]* is simply given by the the total concentration times the probability that the
electronic state associated with the P impurity atom is not occupied by an electron.

If this electrons state is at an energy E in the band gap, basic semiconductor physicstells us that
for agiven Eg and temperature T the concentration of ionized impurity atomsis given by

[PI(*) = [Pd - {1-f(Ep, Er )}

Er - Ep

Il

[Pl - ex
of - &P KT

’ There is no reason whatsoever that a vacancy (or any other point defect you care to come up with)
should not have a energy level (or even more than one) in the band gap of its host semiconductor. This
level then will be occupied or not occupied by electrons exactly like the extrinsic point defect.
If the vacancy is mobile at the temperature considered, it will diffuse around - exactly like an
extrinsic mobile defect.
If the temperature changes, the intrinsic point defects concentration changes to the extent that it can
establish equilibrium - in pronounced contrast to the extrinsic point defects.

’ It should be clear form this, that intrinsic point defects in semiconductors are not all that ssmple. Charge

states must be considered that depend on primary doping with extrinsic point defects and temperature. If
things get really messy, the intrinsic point defects change the actual doping and their mobility (or
diffusion coefficient) depends on their charge state.

’ Looking at jus at few topicsin the case of Si, we obtain a bunch of complex relations, which shall only
be touched upon:

Once again, the equilibrium concentration of charged point defects depends on the Fermi ener gy
Er (which isthe chemical potential of the electrons). As an example, for a negatively charged

vacancy we obtain

Er — Ep
c(V~™)=cV) e
(V™) =c(V) p T

With Eg = Fermi energy, and E = acceptor level of the vacancy in the band gap.
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2.3.1 Point Defects in Semiconductors like Silicon

Thistells us that besides the formation energies and entropies, we now also must know the ener gy
levels of the defects in the band gap!

The dependence of the concentration of arbitrarily charged point defects on the carrier
concentration (i.e. on doping) is given by

cyx(M) Un X
= - O
cvx(M) i

With n;, n = (intrinsic) carrier density, x = charge state of point defect.

’ AsaSi special, we also must consider self-inter stitials (which, if you remember, we aways can safely
neglect for just about any other elemental crystal)

Local equilibrium between vacancies and interstitials follows this relation:

cy(loc) - gi(loc) = oy(equ) - ci(equ)

’ Considering that carrier densities and the Fermi energy depend on the temperature, too, things obviously
get complicated!

’ It thus should not be a big surprise that the scientific community still has not come up with reliable, or
least undisputed numbers for the basic properties of intrinsic point defectsin Si, not to mention the more
complicated semiconductors.

But do not let yourself be deceived by this: While you might have problems coming up with
numbers for e.g. the vacancy concentration in Si at some temperature and so on, the Si crystal has
no problems whatsoever to "produce” the concentration that isjust right for this condition.

’ Hereisarelevant article that can be read as a pdf file:

The Engineering of Intrinsic Point Defectsin Silicon Wafers and Crystals
R. Falster and V.V. Voronkov
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2.4.1 Point Defects in lonic Crystals

2.4 Point Defects in lonic Crystals

2.4.1 Motivation and Basics

’ Point defectsinionic crystals (e.g. NaCl or AgCl,) and oxides (e.g. SnO,, or ZrO,) are quite important
and put to technical uses.

Unfortunately (from the metal oriented persons point of view) the scientific community working
with those materials has its own way for dealing with point defects, which differs in some respects
from the viewpoint of the metal and semiconductor community.
There are historical and "cultural” reasons for this, but there are al'so good reasons. Essentialy, in
dealing with more complicated crystals - and ionic materials or oxides are always more complicated
than metals or simple semiconductors - a more chemical point of view istraditional and useful. Let
uslook at some important points that have to be considered in this context.

’ First, welook at the stoichiometry of these crystals.

lonic crystals must consist of at least two different kinds of ions. They may then contain point
defects in concentrations far above thermal equilibrium (as defined relative to a perfect crystal), if
the real material is non-stoichiometric. If you imagine asingle crystal of, lets say, NaCl with the
composition Na; . sCl and d << 1, i.e close to, but not exactly at stoichiometry (which is what you
always would expect in reality), your only way of forming a crystal seems to be to use some point
defects asintegral part of the crystal.

Y ou might consider, e.g., to introduce a concentration of & vacancies on the Na lattice sites, or to
put a concentration of d Cl—ionsin interstitial positions, or to mix both defect typesin aratio where
the sum of the concentrations somehow equals .

But now lets think again. If you consider acrystal of Na, . 5Cl, you arereally talking about a
crystal with N atoms of negatively charged Cl— ionsand N - (1 — &) positively charged Na* ions,
which means that the crystal would carry a net negative charge of e - d - N and thus a dramatically
high energy. No such crystal can exist - there must aways be equal numbers of Nat and Cl—ions -
aslong asthere are no impurity atoms.

’ This leads us to the second point, the necessity for char ge equilibrium or "zero net charge condition”
considered before.

If we stay with the above example of NaCl, we are forced to conclude that a NaCl crystal would be
necessarily perfectly stoichiometric - it cannot grow in any other way. However, no crystal exists
without some impurities. If, for example, some Ca atoms are to be included into an otherwise
perfectly stoichiometric NaCl crystal, they will always be doubly charged Ca** ions, and we now
must remove twice the number of Na* ions to preserve charge neutrality (or introduce twice the
number of additional Cl-ions). Obviously we now must introduce a Na vacancy for every Catt ion
included in the crystal (or Cl- interstitials and so on).

The concentration of vacancies now could be much higher than the thermal equilibrium
concentration. But we still may have equilibrium; namely chemical equilibrium, or, if the defects
are charged, electrochemical equilibrium!

’ We see with this ssimple example, that there is alinkage between stoichiometry, charge neutrality,
impurities and defects, with the added complication that it is not necessarily clear which kinds of point
defects must be present in what concentration.

We also see that point defects in concentrations that have nothing to do with the thermal
equilibrium concentration in perfect crystals may be an integral part of areal ionic crystal.

’ The simple example, however, makes also clear that stoichiometry, impurity, and charge neutrality
considerations still do not tell us exactly what kinds of point defects are needed in which concentration,
but at best will give someintegral numbers.

’ Let uslook at athird point. It concerns the surface and its interaction with the surroundings - thisis
where many applications comein.
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2.4.1 Point Defects in lonic Crystals

Consider aZr O, crystal in thermal equilibrium with a gas containing a certain O, concentration, at

atemperature where the oxygen in the crystal is mobile to some extent (maybe because there are
O-vacancies?). We must expect some "chemical” reaction to take place. Some additional oxygen
may be incorporated into the crystal, or some oxygen may diffuse out of the crystal into the gas.
The tendency of whatever is going to happen in this case will be determined by the conditions for
chemical equilibrium, or, in other word, by the chemical potentials of the participating species.

But we must expect that point defects are involved in whatever happens across the interface. For the
particular example given (which happens to describe the principle of an oxygen sensor) we must
expect that some electrical effects take place as well because introducing excess oxygen (always
negatively charged) into the crystal or taking some out, will influence the charge distributions and
thus electrical potentialsin the crystal.

Some electrochemical equilibrium will be reached that contains electrical potentia differences - a
voltage develops across the interface.
’ The common denominator in all considerations made so far was: We always had some kind of linkage
between "chemistry" as expressed in reactions between atoms or in stoichiometric considerations, and
(usualy charged) point defects..

’ We now get the idea of what needs to be done for a general treatment of point defects and ionic crystals:

We want to define point defectsin a way
wher e they can beincluded
into the familiar concept of chemical reaction equations
Wethen treat them the same way wetreat chemical reactions

’ In other words, we want to write equations analogous to

n-A+m-B < A,B

[A]" - [B]"
[Aan]

= const.

With the option that "A" and "B" may refer not only to atoms, but also to point defects.

’ We want to do thisin away where we can use the full box of tools developed for chemical reactions,
e.g. themass action law (shown above), chemical potentialsand activities instead of concentrations,

the concept of kinetics, of chemical equilibrium, etc.

’ Asisturnsout, thisis possible, but it is not obvious how to do thisright. There are several approaches
and compromises to achieve the best description. We will look at thisin the next subchapter.
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2.4.2 Kroger-Vink Notation
2.4.2 Kroger-Vink Notation

’ How do we treat point defects in perfect analogy to atoms and moleculesin chemical reaction equations? A very clear way
was suggested by Kroger and Vink, it is therefore called "Kroger-Vink notation” or notation by " structur e elements” -
we aready had a glimpse of this.

We define vacancies and interstitials as particles which occupy a defined site in a crystal and which may have a charge.

Sitesin acrystal are the points where the atoms, the interstitials, or the vacancies can be. For a crystal composed of two
kinds of atoms we have, e.g., the "A-sites’ and the "B-sites’. An A-atom on an A-site we denote by A 5, avacancy on a

B-siteisaVpg

This leaves the interstitials out of the picture. We therefore ssmply name all possible interstitials sites with their own
place symbol and write A; or B; for an A-atom or a B-atom, resp., on its appropriate interstitial site.

An interstitial site not occupied by an interstitial atom then, by definition, is occupied by a vacancy and symbolized by
V;. A perfect crystal in the Kroger-Vink notation thusis full of vacancies on interstitial sites!

’ In order to facilitate book keeping with respect to the electrical charge, we only note the excess chargerelative to the
neutral lattice. Positive excess charge is marked by apoint (e.g. A*"), negative charge by a hyphen or dash or whatever you

liketo cadl it (e.g. Al ) to distinguish this relative charge from the absolute charge. If we consider a positively charged Nat
ion in the NaCl lattice, we write Nay, aslong asit is sitting on its regular lattice position, i.e. without a charge symbol. If we

now consider avacancy on the Na-site, the Na-ion asinterstitial, or a Ca*+ ion on the Na-site, we write

v/ nar Na’j, and Ca’y, because this defines the charge relative to the neutral lattice.
Running through al the possible combinations for our NaCl crystal with some Ca, we obtain the matrix

A atom (Na*) B atom (CI-) Vacancy C atom (Catt)
A-site Nana Cl//\a V/Na Ca'na
B-site Na"cl CICl \VA al Ca...CI
i-site Na'i cl /i Vi Ca"i
’ Thiscalsfor alittle exercise
Exercise2.4.1

Describing structure elements

’ What have we gained by this? We now can describe all kinds of structure elements - atoms, molecules and defects - and their
reactionsin aclear and unambiguous way relative to the empty space. Lets ook at some examples

Formation of Frenkel defectsin, e.g., AgCl:

Adag + Vi = Viag + AQ

We see why we need the dlightly strange construction of avacancy on an interstitial site.

Formation of Schottky defects for an AB crysta
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2.4.2 Kroger-Vink Notation

Ap + Bg = V/y + Vg + Ay + Bg

Ap + Bg = V/y + Vg + AB

The second equation simply considers the two dislodged atoms as a molecul e that must be put somewhere.

’ Thislooks good. The question is, if we now can use the mass action law to determine equilibrium concentrations. If the

Frenkel defect example could be seen as analogous to the chemical reaction A + B = AB, we could write a mass action law
asfollows:

[AGagl - [Vi]

[V/agl - [Ag; ]

= const

with [A] meaning "concentration of A". The reaction constant is amore or less involved function of pressure p and
temperature T, and especially the chemical potentials of the particlesinvolved.

Unfortunately, thisiswrong!

’ Why? WEell, the notion of chemical equilibrium and thus the mass action law, at the normal conditions of constant
temperature T and pressure p, stems from finding the minimum of the free enthalpy G (also called Gibbs energy) which in

our case impliesthe equality of all chemical potentials. Y ou may want to read up abit on the concept of chemical potentials,
this can be donein the link.
In other words, we are searching for the equilibrium concentration of the particles n; involved in the reaction, which, at
agiven temperature and pressure, lead to dG = 0.
The equation dG = 0 can always be written as atotal differential with respect to the variables dn;:

0G 0G
dG = — - dng + — -dny + ..
onq an,

The partial derivatives are defined as the chemical potentials of the particlesin question and we always have to keep in
mind that the long version of the above equation has a subscript at every partia derivative, which we, like many others,
conveniently "forgot". If written correctly the partial derivative for the particle n; reads (in HTM L somewhat

awkwardly),

9G

on; Hp, T, nj »; = const

Meaning that T, p, and all other particle concentrations must be kept constant.

’ Only if that condition is fulfilled, a mass action equation can be formulated that involves all particles present in the reaction
equation! And fulfilling the condition means that you can - at least in principle - change the concentration of any kind of
particle (e.g. the vacancy concentration) without changing the concentration of all the other particles.
This "independence condition" is automatically not fulfilled if we have additional constraints which link some of our
particles. And such constraints we do have in the Kroger-Vink notation, as alluded to before!
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2.4.2 Krdger-Vink Notation

There is no way within the system to produce a vacancy, e.g. V o without removing an A-particle, e.g. generating an A;
or adding another B-particle, Bg.
S... I We now have avery useful way of describing chemical reactions, including all kinds of charged defects, but we cannot
use simple thermodynamics! That isthe point where other notations come in.
’ You now may ask: Why not introduce a notation that hasit all and be done with it?

The answer is: It could be done, but only by losing simplicity in describing reactions. And simplicity is what you need
inrea (research) life, when, in sharp contrast to text books, you do not know what is going on, and you try to get an
answer by mulling over various possibility in your mind, or on a sheet of paper.

So "defects-in-ceramics’ people live with several kinds of notation, all having pro and cons, and, after finding a good
formulation in one notation, translate it to some other notation to get the answers required. We will provide a glimpse of this
in the next subchapter.
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2.4.3 Schottky Notation and Working with Notations

Schottky Notation

’ The Kroger-Vink notation defined structure elements - atoms, molecules, point defects and even electrons and holes relative to empty space. Despite
the problem with the inapplicability of the mass action law, this notation isin use throughout the scientific community dealing with point defects.

’ The other important notation - the "Schottky notation" or "building element notation" is defined as follows:
Defects are defined relative to the perfect crystal.

Charges are notated as in the Kréger-Vink way, i.e. relative to the perfect crystal. We again use the " " for positive (relative) charge and the "/"
for (relative) negative charge.
’ To make things a bit more complicated, there are two ways of writing the required symbols, the "old" and the "new" Schottky notation.

The "old" Schottky notation used special graphical symbols, like black circles or squares which are not availablein HTML anyway.
So we only give the new Schottky notation in direct comparison with the Kréger-Vink notation, again for the example NaCl with Ca impurities,

i.e
A =Na*,B=CI-, C =Catt.

A on B site A-vacancy A-inter stitial
Schottk
o) y NalCl| - INaf Na’
Kroger-Vink Nag ™ Ve Ng

’ So far, the difference between the Schottky notation and the Kréger-Vink notation seems superficial. The important difference, however, becomes
clear upon writing down defect reactions. Lets ook at the formation of Frenkel and Schottky defects in the two notations.

Frenkel defects Schottky defects
Schottky / . / .
(new) [Agl +Ag =0 [Agl +|CI|'+ AB=0
Kroger-Vlnk AgAg+Vi :V/Ag+Ag .i AgAg+C|CI :V/Ag+V -C| +AB

’ In words, the Schottky notation says:

For Frenkel defects: A negatively charged Ag vacancy plus a positively charged Ag interstitial gives zero.

For Schottky defects: A neatively charged Ag vacancy plus a positively charged Cl vacancy plusa AgCl "lattice molecule” gives zero.
’ Thisis clear enough for these simple cases, but not as clear and easy as the Krdger-Vink notation.
’ But, and that is the big advantage, we can apply the mass action law directly to the reactions in the Schottky notation.

Thisis not directly obvious. After al, Frenkel defects, e.g., do not only appear to be linked (where thereis an interstitial, there is also a vacancy),
but actually are linked if the defects are charged (otherwise there would be neither net charge in the crystal, or we would have to invoke electrons
or holes to compensate the ionic charge - but then we would have to include those into the reaction equation).

Theoretically, however, you can introduce one more vacancy or one more interstitial into a crystal with a given concentration of each and look at
the change of the free enthalpy, i.e. the chemical potential of the species under consideration. The independence condition does not require that it
is easy to change individual concentrations, only that it is possible!

If you do neglect the energy associated with charge (i.e. you look at the chemical and not the electrochemical potential), the answers you get will
not contain the coupling between the defects and you have to consider that separately. We will see how thisworks | ater.

’ Now, why don't we use just the Schottky notation and forget about Krdger-Vink? We asked that question before; the answer hasn't changed: If we
look at more complicated reactions, e.g. between point defectsin anionic crystal, agas on its outside, and with electrons and holes for compensating
charges, it is much easier to formulate possible reaction in the Kroger-Vink notation. Thetrick now is, to convert your reaction equations from the
Kroger-Vink structure elements to the Schottky building elements. There is a simple recipe for doing this.

Converting Krdger-Vink to Schottky

’ All we have to do, isto combine the two structure elements of Kroger-Vink that refer to the same place in the lattice and view the combination as a
building element.

’ Letsfirst look at an example and then generalize. Consider the Frenkel disorder in AgCI. Using structure elements, we write
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2.4.3 Schottky Notation and Working with Notations

AQag t Vi = V/Ag + AQ

Combining the terms referring to the same place in the lattice (with the actual defects always as the first term in the combination) yields

(V/Ag - AgAg) + (Agj — V) =0

Now all we haveto do is to write down the corresponding Schottky notation and identify the terms in brackets with the Schottky structure
elements. We see that

(V/ag = Adag) = |Agl

(Agi—-Vj) = Ag-

’ We can generalize thisinto a"translation table":

A on . o AB Con Free
Bste | A-vacancy | A-interditial molecule B site electron hole
All defects neutral Always charged
Schottky
(new) AlB| A A AB ClB| e h-
Building
elements
Kroger-Vink
Structure Ag Va Aj AB Cg e h*
elements
Combined
structure Ag- Cg-
elements= B Va-Ap Ai-V; AB B e h*
Building B B
elements

The General Recipefor Point Defect Reactions and First Example
’ If you now stick to the full formalism, what you doiis:
1. Write down the possible reaction with structure elements (= Krdger-Vink notation).
2. Trandlate that to building elements (= Schottky notation).

3. Consider charges and check for electroneutrality. If the sum of all chargesis not zero, search for mistakes and if there are none, throw in holes
or electrons, as your system provides.
4. Use the mass action law with the final (building element) equation (including holes or electrons).

First Example: Schottky Defects
’ We take the Schottky defect as afitting elementary example and go through the movements:

1. Kréger-Vink structure element equation

Agag *+ Clgy = Vipag + Vg + AB
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2.4.3 Schottky Notation and Working with Notations
After rearranging (remember, the defect comesfirst!) so we can use the translation table, we have

(V/Ag - AgAg) + (Vg —-Clg) +AB =0

2. Switch to building elements using the the expressions in brackets; we have

|Agl + |Cl|"+ AB =0

3. Charge neutrality demands

2(pos. charge) = Z(neg. charge)

[IAgll = [ICI] ]

4. The mass action law now gives

[AgH - [IC1| 1 2vipP
—_— eX —

p
[AB] kTE

And thisleads to

Zvip®
[AgIl = [ICI|1 = [AB] -exp -

With p; = standard chemical potentials of the two vacancies and alattice molecule, resp., and v ; = stoichiometric coefficients of the reaction
(1,1, and -1 in our case).
’ This sure looks strange compared to the formula derived in the "physical" way. But it is the same. Lets see why.

First, the activity (or concentration) of the lattice molecule AB issimply [AB] = 1 since it is nothing but the number of mols of AgCl molecules
inonemol of AgCl; i.e.itis=1. Thisgivesus

Zvini®
[IAgl] - [ICI| 1 =exp—

kT

Now lets ook at the energiesin the exponent. As always, the energy scaleis relative. From whatever zero point you measure your energy to
make an Ag vacancy or a Cl vacancy, you must subtract the energy of the AB molecule as measured in that system. If you take it to be zero -
which then defines the energy origin of your standard system - the standard chemical potentials of the two vacancies are just the usual formation
energies.

’ Note that as in treatment given before, the mass action law alone does not specify the vacancy concentration, only their product.

Only invoking the electroneutrality condition, which demands [|[Ag|] = [|Cl| ], allows to compute the individual concentrations. Writing H* and
H- for the formation enthalpies of the positively or negatively charged vacancy, resp., we obtain the familiar result

H*+H-

[IAgIl = [ICl| 1= exp—
2kT

Second Example: Frenkel Defects
’ First we write down the reaction with structure elements (= Kréger-Vink notation).
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2.4.3 Schottky Notation and Working with Notations

Ap + VY, =Ai-+VA/

After rearranging (remember, the defect comesfirst!) so we can use the translation table, we have

(A = V) + (Va/ —Ap) =0

2. The expressions in brackets are the building elements, we have

Al + |AF =0

3. Charge neutrality demands

Al = |AY

4, The mass action law now gives

A problem? What are we going to do with the "0"? Well, there really is no problem with the zero - just take the mass action law asit is

GO Reaction
rl(é\i)vi - EXp_ﬁ- =K'= Constant

Nowhere was it required that in the product there must be terms with negative stoichiometry coefficients v;. This gives us

Gr
[AT-[IAl] =exp——
kT

And we identify GO with the formation energy Gg of a Frenkel pair as before.

Together with the charge neutrality condition we have

/ GF
Al = [IA = [
[AT = [IAll = exp "

almost the familiar result - except that we do not have the factor (N/N')Y/2,
OK - we do have a problem, but not with the zero. Where did we lose the factor (N/N")Y/2 2

’ Lets ook at equilibrium another way. We do not involve the mass action law but go one step back to the equilibrium condition for the chemical

potentials: pa- = Hjay - We write the chemical potentialsin the standard form and obtain

Na-

N'

Ha- = HO5. + KT -In

n
Ay
Hay = MOy + kT-InT
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2.4.3 Schottky Notation and Working with Notations

For equilibrium we now obtain (if you wonder at the n/N and n/N', consult the link)

HOA- + KOay

kT

Na--Nay =N -N' - exp—

Charge neutrality tells us that

Na- =Njay = Nep

For the concentration of Frenkel pairs cgp = Ngp/N we now obtain the correct old formula

ON 02 WOA. + W0 ON OV2 Grp
Crp = O 0O "eXp-———— = 00 eXp—- ——
oN' O 2kT oN' O kT

’ Aha! Applying the mass action law uncritically causes a problem: The standard chemical potentials of vacancies and interstitials were for different
standard conditions:
In one case (the vacancies) the standard condition was for adding N vacancies to the system, in the other case (the interstitials) it was for adding
N' =N - | interstitials (and | being some factor taking into account that there are more positions for interstitials than for vacanciesin a crystal).
If that appears to be incredibly complicated and prone to errors - that's because it is! But take comfort: Y ou get used to it, and working with it is
not al that difficult after overcoming an intial "energy barrier”.

Some Remarksto Practical Work

’ Many books and other texts to not dwell extensively on the fine differences between notations, problems with the standard condition in the chemical
potentials, meaning of reaction equations and so on - they write down a reaction equation, in the worst case amix of Kréger-Vink and Schottky
notations, throw in electrons or holes right away to achieve charge neutrality, and write down the mass action law in the form

G G
I:I(a')VI :eXp_ﬁ = K(T) = const - exp — ﬁ

And not much attention is given to the constant K(T) in front of the exponential.
Even though it's faulty thermodynamics, let's see what happens if we do that for Frenkel defectsin the Krdger-Vink notation:
’ The reaction equation was

Adag *+ Vi = V/Ag + AQj

AgAg + Vi _V/Ag —Ag =0

The mass action law uncritically applied gives

[Adagl - [Vi] G
———————— =const - exp ——
[V/] -[Ag ] kT

Aslong as the defect concentration is small compared to the concentrations of atoms and lattice sites, we may simply equate
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2.4.3 Schottky Notation and Working with Notations

[Adagl = 1

Vil

1
=

Which leaves us with

G
V/] -[Ag] = const - exp ——
[V]-[Ag1] ka

With G =-G', but that isirrelevant - we simply know that the exponential always has aminus sign for the reactions we are interested in and that
G must be the formation enthalpy of a Frenkel pair.
’ That isthe correct result, expressed in Kroger-Vink terms. What that meansiis that you don't have to worry all that much about the finer details as
long as you are not terribly interested in the exact value of the constant in front of the exponential - you will mostly get your reaction equation right!
Luckily, there are only afew fundamental reaction equations involving point defects - everything else can be expressed as linear combinations of
the fundamental reactions (like Frenkel and Schottky defect equilibrium) - after some initiation, you will feel quite comfortable with defect
reactions.
’ As shown above for Frenkel defects, it is often advisable not to use the mass action law directly, but to go one step back and use the equilibrium
condition for the chemical potentials. This gives not only a clearer view of what constitutes the standard conditions, but also circumvents a number of
other problems associated with the law of mass action (if you really want to know, consult the advanced module accessible by the link).
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2.4.4 Defect Reactions in lonic Crystals

2.4.4 Systematics of Defect Reactions in lonic Crystals and Brouwer Diagrams

’ There are essentially three fundamental situations for defectsin ionic crystals.

Intrinsic defects; i.e. the defects present in the bulk of a crystal in thermodynamic equilibrium. Thisincludes
the Frenkel and Schottky defects considered before, but also some other kinds not yet discussed.

Defect Doping; i.e. the intentional manipulation of defect types and concentrations by the incorporation of
specific impuritiesinto the (bulk of the) crystal.

Defect reactions at interfaces, e.g. the incorporation of atoms or molecules from the "outside" into the
crystal via defects - or the opposite, the loss of crystal atoms to the outside world generating defects in the
crystal.

’ There are not always clear distinctions, but lets look at these three cases separately for a start.

Intrinsic Defectsin lonic Crystals
’ This case includes all defect situations that one could find in a perfect ionic crystal. Besides Schottky and Frenkel
disorder or any mixture of the two, we could have many more defects - any combination of interstitials and
vacancies for any kind of atom in the crystal is admissible.
One example: Inan AB crystal, instead if two oppositely charged vacancies (the Schottky defects), we could
also have two interstitials of the two kinds of atoms carrying different charge.
Thiskind of defect is called an "Anti Schottky defect", it would be formed according to the (Kroger-Vink)
reaction

AB + 2Vi = Ai. + Bi/

Following our recipe, we obtain after rearranging and "trandating” to Schottky notation:

(A = V) + (B - V) = AB

A+ B = AB

’ Thisis essentialy the same result as for the regular Schottky defects. However, in using the mass action law, we
would have to use the formation energies for interstitials (and take care of the additional degrees of freedom for
arranging interstitials as in the case of Frenkel defects).
In reality, the formation energies of interstitials are mostly larger than those for vacancies; thisis certainly
true for the "big" negatively charged anion interstitial.

Anti Schottky defects therefore have not been observed as the dominating defect type so far. But they are not
only perfectly feasible, but also aways present - only their concentration is so small that it can not be
measured; consequently they do not play arole in anything interesting connected with defects.

’ We could also conceive of "anti site defects’, i.e. A-atoms on B-places and vice versa; Ag and B, of
combinationslikeaV 5 and Ag, and of plenty more intrinsic defects for more complicated crystals, e.g. for
Y Bay,Cu307 (the famous first high temperature superconductor with a critical temperature larger than the boiling
point of liquid N»).
We could, moreover, include isoelectronic impurity atomsinto the list; e.g. K instead of Na; Ba instead of
Ca, or F instead of ClI, which could be incorporated into a crystal without the need to change anything else.
A little dirt, after all, isalways "intrinsic", too.
And all the reactions that are conceivable will occur. The only difference is that some might be frequent and
some might berare - and it is often sufficient to only consider the dominating reaction.

’ Thisteaches usamajor lesson, especially with respect to the upcoming paragraphs
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2.4.4 Defect Reactions in lonic Crystals

There are far too many defect types and reactions principally possible in ssmple (ionic) crystals (not to
mention complicated ones) for apriori treatments of all possible effects. We must invoke some additional
information (such as anion interstitials being unlikely) to simplify the situation to alevel where it can be
handled.

For the intrinsic defects mentioned so far, this was easy and has been done all along. It will become an
important guiding principle for the other two cases, however.

’ But we are not yet done with intrinsic defects:. If we look at semiconducting ionic or compound crystals, we may
have to include electrons and holes in our defect systematization. Let's |ook at this, first assuming that el ectrons
and holes are the only defects.

Implying a band structure and always using the Boltzmann approximation for the tail of the proper Fermi

distribution, we might denote the generation of an electron in the conduction band in complete analogy to the
Kroger-Vink system.by

| e/ + hc =éc + hy

Rearranging gives

| (ec/ —he) + (hy —€y) =0

The obvious trandlation to Schottky notation yields

| € +h =0

Adding electroneutrality, i.e. € = h*, makes the analogy to Frenkel defects complete, and we obtain

E
€ =h=c-exp——
kKT

’ Thereisabig difference, however. We know that the constant c in front of the exponential is the effective density
of states Ngr (or more precisely [NCq; - NV ] %) and the formation energy is given by E = Ey/2, with Eg = band
gap.

Thisis knowledge that comes from quantum theory and there is simply no way to deduce this from classical
thermodynamics.

’ However, the mass action law is based on considering the minimum of the free enthalpy - aprinciplethat is
awaysvalid. It isonly the chemical potential of electrons and holes that cannot be directly expressed in the
standard form. Mass action, however, remains valid.

Defects and Doping

’ Lets now consider some typical doping reactions. Most common and important is the doping of semiconductors
with substitutional impurities, i.e. P, As,or Bin S.

If we call the substitutional dopant atoms D (for Donor) or A (for Acceptor), we may express the doping
reaction, i.e. the exchange of electrons or holes with the bands, as follows
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2.4.4 Defect Reactions in lonic Crystals

D + ¢

O
I

Al + h

>
I

Kroger-Vink and Schottky notation are identical in this case (figure it out!), and we have the mass action law

e,
——— = kp
(D1 [€D)

[D]

= —_— .k -1

[€] o] P

Lets consider a simple situation with just one type of doping, say donors, with a concentration [D], giving us
[€] = kpL[D]/[D"] as stated above. But we have no holes so far. We need some other reaction to produce
holes, what comesto mind is

h-[D]
(D]

g

’ Can we get the "universal" mass action law for semiconductors, as we know it from semiconductor physics from
this, i.e.

| [€]-[h] = n2

If we form the product with the equation from above we obtain

| [h]-[e] = kp - Ka

We have the mass action law as we know it with, however, unspecified constant. In order to obtain the
absolute concentrations, we need one more equation, which, in the absence of other charged defects, is
supplied by the electroneutrality condition

| [h] + [D] =[€]

file:///L|/hyperscripts/def_en/kap_2/backbone/r2_4_4.html (3 of 10) [02.10.2007 16:16:56]



2.4.4 Defect Reactions in lonic Crystals

’ OK, we are on safe grounds again. But there seems to be a certain ambiguity. Instead of thereactionh'+ D = D",
we also could have chosen the "norma" intrinsic reaction € + h* = 0 from above.

So what isit? Both, of course. The equations above are dominating at low temperatures where thermal
carrier generation can be neglected, i.e. not too high temperatures, the other one dominates at high
temperatures.

But both occur independent of each other and, since there is only one equilibrium value for the respective
concentrations, both must give the same numerical values for the same quantity if evaluated.

’ This teaches us an important lesson for the treatment of defect equilibria

Since the mass action law and the electroneutrality condition supply only two equations for possibly more
than two unknown defect types, any sensible reaction equation that comes to mind and contains the unknown
quantities can be used to supply the required additional information! The equilibrium concentration of defect
typei isaways the same - no matter in which equation it comes up!

’ Aswe see, even for pure semiconductorsit is possible to describe the electron-hole equilibrium in terms of

reaction equations.

But the notion of chemical potentials becomes somewhat strained for calculating concentrations or
"activities'. Considering densities of states and distribution functions (Fermi distribution in full generality or
Boltzmann distribution in the proper approximation) may be more advantageous as long as only electrons
and holes are considered.

’ Now letslook at adifferent kind of doping: We intentionally change the vacancy concentration, i.e. we dope a
crystal with vacancies.
In asimple example we may look back at the introductory paragraph of this subchapter, and consider a

reaction equation for the incorporation of Cainto a NaCl crystal (in Schottky notation right away - can you
figure out the Kroeger-Vink notation?)

Cang + Ving = 0

Inwords: A Ca-V g pair isintroduced (or taken out ) of the crystal.

The mass action law demands that [Cay,] - [V/na] = constant; and charge neutrality is conserved if [V/y,] =

[CaNal.

If, and only if thereis no other way to achieve charge neutrality, e.g. by generating electrons or holes, we
will now produce vacancies by incorporating a doping element in perfect analogy to producing electrons or
holesin semiconductors.

’ Of course, we could also have incorporated Ca by generating Cl/ interstitials, amix of vacancies and interstitials,
or even worse, amix of vacancies, interstitials, holes and electrons. All those possible reactions will occur and we
cannot know a priori what will dominate. In areal case we must use some additional knowledge as pointed out
above if we want to get results.

Well, "we" do know that vacancy doping can indeed be achieved in thisway in Zr O, doped with e.g. Y03
or CaO, generating Vo, i.e. doubly positively charged oxygen vacancies. Thisisaparticularly relevant

example, because it is part of the working principle of the oxygen sensor in your car exhaust system that
feeds the controller of the car engine in order to keep emissions at the lowest possible level.

The technical importance is the same as in semiconductors. Whatever the intrinsic defect concentrations
might be in the perfect intrinsic material, with doping you have a more or less fixed concentration of
vacancies that can be far larger than the intrinsic concentration and may not depend sensitively on
temperature.

’ Great if you need lots of vacancies because you want to make an ionic conductor where the conductivity depends

on the diffusion of oxygen via a vacancy mechanism. However, vacancy doping is not such a hot issue at low
temperatures (like room temperature) if the vacancies - and therefore the oxygen ions, too - are not mobile at
reasonabl e temperatures - in contrast to electrons and holes which get rather more mobile with decreasing
temperature.

But if there is some mobility, you have now increased the ionic conductivity by orders of magnitude -
exactly as you increase the electronic conductivity in semiconductors by doping.
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2.4.4 Defect Reactions in lonic Crystals

Moreover, you know the concentration of the vacancies, and within some parameter range, you can treat it as
constant which means you can remove [V] from the business end of the mass action law and multiply it into
the general reaction constant. Lifeis easier.

’ There are more examples for technical uses of doping, but we will now consider the third basic reactions, the
defect reactions at interfaces.

Defect Reactions at | nterfaces

’ Considering that all chemical reactions between a solid and anything else occur at the surface of the solid, i.e. at
the solid-gas, solid-liquid, or solid- solid interface, this headline covers a good part of general chemistry.

Indeed, it has become clear in recent years that reactive solid-solid interfaces generate or consume point
defects. However, here we will only ook at reactions between a gas and a (simple) ionic crystal asthey are
used in sensor technology. In other words, we consider the possible reactions between aMeX crystal and a
Xo(9) gasin afirst smplified treatment. We do not consider charges for the time being, to keep things

simple.
The crystal may then incorporate X,(g) (or emit it) via several reactions which we can easily formulate with
the the Kroger-Vink notation:

| 1. VaXo(Q) + Vi = Xy

i.e. an atom of the gas occupies afitting empty place (= vacancy) of the crystal.

| 2, VaXo(Q) + Vi = X

i.e. an atom of the gas occupies afitting empty place (= vacancy) in the interstitial lattice and is now an
interstitial.

| 3. Y2Xo(@) + Vv = Xum

i.e. an atom of the gas occupies a (probably not well fitting) empty place (= vacancy) in the metal ion lattice
and is now an anti-site defect.

And there will be even more possibilities as is shown below.

’ The thing to note once moreis: If these reactions can occur, they will occur - independently of each other. Only

their probabilities (or reaction rates) are (wildly) different, and we are well off if we know (or can make an
educated guess) at the dominating reaction. And the equilibrium concentrations [D;] of some defect type D;, no

matter in which equation it appears, are always identical in equilibrium.
In other words, we should know

1. What kind of defect situation dominatesin our MeX crystal (Frenkel- or Schottky defects etc.); i.e.
which reaction constant is smallest?

2. How can charge neutrality be achieved (only with ions and defects; only with electrons and holes, or
in amixture)? In other words are we dealing with an ionic conductor, a semiconductor, or a mixed
case? Of course, the answer to this question may well depend on the temperature.

3. Isthereintentional (or unintentional) ionic or electronic doping that imposes specific conditions on
the defect situation?

’ This only looks hopeless, but rejoice, it isnot - albeit for a sad reason: After all, we are not so much interested in

defects per se, but in their uses. Typically, we want to do something "electrical” - make a better battery, afuel
cell, asensor giving of avoltage or a current in response to the stuff to be sensed - and this demands that we use
only ionic crystals that areionic conductor s of some sort.
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2.4.4 Defect Reactions in lonic Crystals

Unfortunately, not too many ionic crystal are useful ionic conductors; it's just a handful of crystal families.
And only those families we have to know. The search for areal good (and affordable) ionic conductor at
room temperature is still on - if you find it, you may not make the Nobel prize, but certainly agreat deal of
money.

So al it takesisto study some 4 or 5 typical cases which contain practically everything encountered in ionic
defect engineering.

’ The paradigmatic case is an undoped crystal with Frenkel defects and some semiconducting properties. We start
assuming that the electron/hole concentration is far smaller than the Frenkel defect concentration.

Thermal equilibrium of the MeX crystal by itself thus means that we have

[Mi] = [VIy]

[€] = [h] << [Vl

’ Now we establish equilibrium with the gas X5(g). It could be H,, O,, Cl,, F5, whatever.

How are X atoms to be incorporated? Surprisingly, perhaps, none of the three possibilities given above isthe
preferred reaction. We do not have X- vacancies (V) availablein our case, and we are not going to generate

very unlikely X interstitials (Xj') or anti site defects. We want to incorporate X on aregular lattice site.

Now you see why the Krdger-Vink notation is useful. Playing around a bit with what you have (and putting
in charge neutrality right away), gives

2X(9) + My = MX + Viy + hr

In words: An X-atom takes out aM atom from its position on the crystal surface, forming aM X molecule
that is added to the crystal somewhere, leaving back a vacancy on aM-site and a hole.

Thisisnot so easily expressible in Schottky notation (try it), but leads easily to the mass action law noticing
that [M 4] = [MX] = const = 1 and thus not needed in the "business end" of the mass action law.

We could come up with other reaction equations achieving the same result; but the one we have is good
enough for the time being.
We thus obtain two "master” equations for this case, one from mass action and one from charge neutrality exactly
along the lines discussed before.

Mass action law

[X2(g)1V2

————— = const.
[V/im] - [h1]

Charge neutrality

[Viml + [€] = [Mi] + [h]
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2.4.4 Defect Reactions in lonic Crystals

We have two equations for the four unknowns V/, €, M;, and h- which determine the electrical conductivity
o asafunction of the concentration (or partial pressure) of the gas [X5(g)] via

o([X29)) = Zi (qi -G - 1)

With q = charge carried by the defect i, ¢; = concentration and p; = mobility of defect i, resp.

’ Again, we need to have additional information about our system if we want quantitative relations between a
measurable parameter like the defect-dependent conductivity.

Doping, as described above, could be helpful. It would provide a more or less constant value for e.g. the
vacancy or electron concentration and thus remove one (or two) unknowns.

Without that, however, we have to resort to case studies making reasonable assumptions and considering the
important quantities for the task at hand. As an example, if we want to measure the [X5(g)] concentration,

we are not so much interested in the absolute value of g, but in its change with the gas concentration,
do/d[X(g)]-

That implies that we are mainly interested in those defects which react sensitively to concentration changes
of [X2(9)].

’ For our example we postulated the two conditions

[M] = [VIv]

[e] = [h] << [Vl

Thisisvalid aslong as we are considering stoichiometric M X which is neither losing nor adding X. In other
words, the crystal is kept at the stoichiometric point - at a certain partial pressure of X,.

It is now important to notice that the reaction with the outside gas at partial pressures different from that
belonging to the stoichiometric point changes the stoichiometry - no matter how you look at it. For ambient
(or standard) pressure, there is no reaction and the stoichiometry is perfect - we are at the stoichiometric
point. For large partial pressures of X,, we will produce MX . , for low pressuresM X, _§ .

’ Now lets see what happens if we work around the stoichiometric point. The absolute concentration of the
vacancies and interstitials may change alittle, and this means that the electron and hole concentration has to
change exactly the same amount in order to maintain charge neutrality.

However, since we assumed that the absolute concentration of the electrons and holes at the stoichiometric
point is much smaller than that of the vacancies and interstitials, the relative change of [€] and [h7] is much
larger than that of [M;] and [V/y4].

Accordingly, we may assume that [M;] and [V/y;] = constant around the stoichiometric point, i.e. within a
certain range of partial pressures of X, below and above the standards pressures which simplifies the
relevant equations to

[X2(g)1V2
[h1]

= const

With adifferent value of the constant, however.
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2.4.4 Defect Reactions in lonic Crystals

The concentration of holes and electrons, on the other hand, changes markedly, but their absolute
concentrations are still much smaller than that of vacancies and interstitials.

’ This leads us to an extremely important generalization:

Asfar asthe mass action law is concerned, only variable concentrations, i.e. concentrations that are not
(approximately) constant, count. The absolute concentration is of no special importance - it becomes part of
the reaction constant.

Asfar as charge neutrality is concerned, only absolute concentrations count. Minority carriers can simply be
neglected in afirst approximation.

’ This give afirst direct result: We can write dow the following simplified mass action law and electroneutrality

condition:
M ass 1 — o -[X 1/2
action [h] = const - [X5(9)]
Electro- /1 — .
neutrality [Viml = [Mi]

How about the electron concentration? Since our approximations imply that there is no interaction between the
point defects and the electrons and holes, we must have [h°] - [€] = const. and thus

| [¢] = const - [Xy(g)] 12

But we will derive that result now by using different reaction equation just to show that in equilibrium you
always must obtain the same results.

’ Lets consider the reaction

| 1/2X2(g) + M'i + e = MX + Vi

Inwords: A positively charged metal interstitial plus an electron and a gas atom form a crystal molecule and
avacancy on theinterstitial lattice.

Neglecting M, M X, and V; with the same arguments as before, we have, as we know that it must be

| [¢] = const - [X5(g)]712

’ Inalog [i] - log [X5(g)] plot we have straight lines with a slope of 1/2 for holes, — 1/2 for electrons and O for the
interstitials and vacancies, respectively. Thislookslike this:
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2.4.4 Defect Reactions in lonic Crystals

T T T ll T T — log[x]

Stoichiometric
point

Without looking at the reaction constants, we know that the cross over of the € and h* concentration lines
must be at the stoichiometric point.

Itisclear that for large deviations from the stoichiometric point the approximations used are no longer valid.
For very small or very large partial pressures of X,, we now may consider the other two possible extremes

by simply extrapolating the lines in the illustration:

1. For very large partial pressures of X, the € concentration becomes negligible while the hole concentration
becomes comparabl e to the point defect concentration. Charge neutrality can only be maintained by
decreasing the positively charged metal interstitials and increasing the negatively charged vacancies. In the
extreme, we may only consider [V/\4] = [h7] for charge neutrality. Inserting that in the reaction equation from

above, we have .

VXo(@) + My = MX + 2h-

which gives the mass action equation

[X]]JZ
[h12

const

congt. - [X]V4

[h1]

For very low partial pressures we obtain exactly along the same line of arguments [€/] = congt. - [X]-Y4.

’ With these relations, we may also cal cul ate the concentrations of the minority point defects by smply inserting
the above equations in the appropriate reaction equation and applying mass action which yields

High pressure 1

9 sl?de [MiT = congt - [X]-V4
L ow pressure

i ithe [V/iml = const - [X]V4

Putting everything together in on single graph, we obtain a schematic Krdger-Vink or Brouwer diagram:
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T T T |l T T = log[x]

Stoichiometric
point

Of course, the change-over would be smooth in reality; and we cannot tell easily where it will occur. It is
also obvious that there are no discontinuities of the concentration curves, which tells us something about the
"const." in the mass action equation.

In the consideration above we did not assign values to the "congt." and carry it through. That might be a
interesting exercise one of those days.

’ In any case, we now have seen how Kroger-Vink reaction equations, mass action, charge neutrality and some
additional knowledge or educated guesses allow to come up with a pretty good idea of what will happenin a
reaction involving point defects.

The possibilities of electronic and ionic doping together with the temperature dependence of point defect
equilibria now give us a powerful tool for designing materials for specific applications.

"lonics', in research and application, is slowly coming into its own. Together with the good old "electronics’
it may well open up new fields for materials scientists.
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3.1.1 Diffusion and Point Defects

3. Point Defects and Diffusion

3.1 General Remarks

3.1.1 Diffusion and Point Defects

’ Point defects generally are mobile - at least at high temperatures. They are the vehicles that make the
atoms of the crystal mobile - point defects are the cause of solid state diffusion.

’ Many products of modern technology depend on solid state diffusion and thus on point defects. Some
examples are:

Micr oelectronics and Optoelectronics.

Solid state Sensors, e.g. the oxygen sensor regulating the emissions of your car.
Solid state batteries,accumulators and fuel cells.
High strength materials.

’ The concentration of point defects, their specific kind (including impurity atoms), their migration
parameters, equilibrium or non-equilibrium conditions and the atomic mechanisms of diffusion
determine what you get in a specific solid state experiment involving diffusion.

Small wonder that many diffusion phenomena are not yet totally clear!

3.1.2 Recapitulation of Ficks Laws

’ Lets quickly go over the basic laws of diffusion which were discovered by Adolf Fick ona
phenomenological base long before point defects were known. The starting point is Ficks 1. L aw,
stating:

The flux j of diffusing particles (not necessarily atoms) is proportional to the gradient of their
concentration, or

ji :—D'DCi

Theindex i refersto the particular particle with number i observed; D is the diffusion coefficient of
that particle.

’ Note that even this purely phenomenological description appliesto everything - e.g. liquids - aslong as
we discuss diffusion and not, e.g., some kind of flow.
This means that the underlying dynamics of the particles on an atomic scale is essentially random
walk.

The derivation of the simple continuum equation above from the primary events of random
scattering (causing random walk) of many discrete particles takes alot of averaging. If you don't
know how it's done (or forgot), do consult the proper (english) modul of "Introduction to Materials

Science I1" (and the links from this modul).
’ If there are several interacting particles, the formulation of Ficks 1. law must be more general, we have
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3.1.1 Diffusion and Point Defects

Ji = — MOy

With p = chem. potential; M = mechanical mobility.

Since the gradient of the chemical potential may be different from zero even for constant
concentrations, specia effects as, e.g., uphill diffusion are contained within this formulation.

’ The next basic equation is the continuity equation. It states:

Changes of the particle concentration within a volume element must express the difference of what
goes in to what goes out - we have conservation of the particle number here. In mathematical terms
this means

oc o
— = —divj
ot

Thisisif course only true aslong as no particles are generated or annihilated (as, e.g., in the case of
electrons or holesin an illuminated semiconductor).

’ Combining the two equations from above we obtain Ficks 2. law:

The temporal change in concentration at a given point is proportional to the 2nd derivative of the
concentration, or

oc
— =div(D-0Oc) = D-Ac
ot

With the final equation being valid only for D = const.

’ Ficks equations look innocent enough, but solutions of the rather ssmple differential equations forming
Fickslaws are, in general not all that ssimple! They do follow some general rules, however:

They involve almost aways statistical functions, as well they should, considering that diffusionisa
totally statistical process at the atomic level.

The solutions to heat conducting problems are quite similar, as well they should, because the
conduction of heat can be treated as a diffusion phenomena. (it actually is a diffusion phenomena).

Thislink gives some more information about Fick's laws and standard solutions.

’ Many diffusion phenomena can be dealt with on the phenomenological base of Fickslaws. All that is

required, isto know the diffusion coefficient and its dependence on temperature and possibly other
variables - you do not have to know anything about the atomic mechanisms involving point defects to
solve diffusion problems.

It turns out, however, that complex diffusion problems - e.g. the simultaneous diffusion of B and P
in Si can not be modeled adequately without knowing the atomic mechanisms and their interaction.
This explains the impetus behind major efforts to unravel the precise mechanisms of diffusionin Si
and other semiconductors.
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3.1.1 Diffusion and Point Defects

3.1.3 Coupling Phenomenological Laws to Single Atomic Jumps

’ We now must link the phenomenological description of diffusion (that only works on averages and thus
only if many particles are considered) with the basic diffusion event, the single jump of a single atom or

defect.
’ We describe the net flux of particles as the difference in the number of particle jumpsto the left and to

the right. With the jump frequency v we obtain Ficks 1. law with an expression for the diffusion
coefficient (for cubic crystals), a detailed derivation is given in the link.

D:g.aZ.V

With a = lattice constant, v = jump frequency, i.e. the number of jumps from one position to a
neighboring one per sec.
g isthe geometry factor of the lattice type considered. It takes into account that considering all

jumps that are possible in the given lattice, only some have a component in the x-direction. Its
definitionis

AXi
g :1/2.Zi —

gisaways about 1 asyou will find out doing the exercise, so we will not consider it any more.

’ The jump frequency v is given by

with G,,, = free enthalpy for the jump or for the migration of the atom or defect.
’ This gives us the second important parameter set describing a property of a point defect, namely its
migration energy and entropy
All we haveto doisto express G, = Hyy — TSy, with Hy, = migration enthalpy (or -energy), and
Sy = migration entropy.
The magnitude of the migration entropy will be comparable to the formation entropy because it has
the same roots. It isthusaround 1 k for "norma” crystals.

’ Combining everything, we obtain an expression for the diffusion coefficient D in terms of the migration
energy:

D =Dg-exp——
KT
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3.1.1 Diffusion and Point Defects

Where all constant (or nearly constant) factors have been included in Dy. Some numerical values
aregiveninthelink.

’ These formulas relate the atomic properties of defects to the diffusion coefficient from Ficks laws.

’ There is one more expression of prime importance when it comes to diffusion. It brings together
statistical considerations from looking at random walk (which iswhat a vacancy does). It is, of course,

the famous Einstein - Smoluchowski relation (for 3-dimensional diffusion).

L2
D = —
61

With L = mean square displacement or diffusion length, T = time since start of the diffusion (or, if

the particle "dies’, e.g. by recombination in the case of minority carriersin semiconductors, its
lifetime).

’ Einstein derived thisin 1905 in a slightly more general form:

<r 2>

g- T

With r = vector between "start" and "stop” of the diffusing particle for the time 1; <r2> isthus the
average of the square of the mean displacement (this is something different from the square of the

average!), and g* is some factor "in the order of 1", i.e. 2, or 6, depending if the diffusionis1-, 2 -
or 3 -dimensional and what kind of symmetry (cubic, etc.) isinvolved.
’ Now let'sdo an exercise:

’ Exercise 3.1-1
| Calculate geometry factors
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3.2.1 Atomic Mechanisms

3.2 Diffusion Mechanism

3.2.1 Atomic Mechanisms

’ There are several atomic mechanisms that lead to the movement of atoms. By far the most prominent are the vacancy
mechanism and the direct interstitial mechanism. How they work can be seen in the animations:

Simulation of the vacancy mechanism

Simulation of the direct
inter stitial mechanism

(3T 1R 211 LA
aaEsasEEs ol
aEeeEees By

al
- .

Note a fundamental difference! If you consider the diffusion of a particular atom (any blue one of your choice
for the vacancy mechanism, any one of the red ones for the interstitial mechanism), your selected atom always
moved abit in the second case, but may not have done anything in the first case. The diffusion of a particular
|attice atom by a vacancy mechanism, while inextricably linked to the movements of vacancies, is not the same

as vacancy diffusion, but something different!

In other words: if avacancy has made N jumps by moving around in the lattice, N atoms will also have made a
jump. However, not necessarily N different atoms, because some individual atoms may have made more than 1
jump. If welook at any particular atom, thereis no way of telling if ti has made ajump or not. At best we can

give some probability.

Thisleads to amajor conclusion: While the diffusion of a particular lattice atom by a vacancy mechanism is
inextricably linked to the movements of many vacancies, its specific movement is principally different from the

movement of asingle vacancy.

’ Other mechanisms which are quite rare but nonethel ess potentially important in semiconductors are:

Indirect inter stitial mechanism
for self-interstitials
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The simulation shows the
elementary step: A
self-interstitial (shownin
light blue for easier
identification) pushes alattice
atom into the interstitial
lattice. The net effect isthe
migration of an
self-interstitial from one
interstitial site to an different
one.



3.2.1 Atomic Mechanisms

The" kick-out" mechanism
for impurity atoms

The Frank-Turnbull mechanisms
(or dissociative mechanism).
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The mechanism istotally
different from the regular
interstitial mechanism. If ina
thought experiment you mark
a specific self-interstitial atom
(paint it red), it will move a
lot with the direct interstitial
mechanism, but hardly at all
with the indirect one.

Interstitial impurity atoms
move rather fast by a direct
interstitial mechanism, until
they eventually displace a
lattice atom. Thisis shown in
the simulation. We now have
asef-interstitial (that may or
may not be very mobile) and
arather immobile
substitutional impurity atom,
which may now diffuse with
one of the other (slow)
mechanisms.

Thetotal effect of the
diffusion now is caused by
the superpositon of two
(usudly very different)
mechanisms. Au in Si, and
possibly some other
impurities, diffusein this
fashion.

Thisisthe pendant to the
kick-out mechanism. Here the
diffusing impurity atom does
not dislodge alattice atom,
but gets trapped in a vacancy,
whereupon it is almost
immobile. The total effect
may be quite similar to the
kick-out mechanism.

Which mechanism -
Frank-Turnbull or kick-out -
is operative, is difficult to
find out. We must expect that
in materials containing
predominantly vacancies, the
Frank-Turnbull mechanism
will accur for some
impurities, while the kick-out
mechanism may be operative
in materials with sizeable
concentrations of interstitials.



3.2.1 Atomic Mechanisms

Variousdirect diffusion mechanisms

’ Then we could have:

The " Extended interstitial" mechanism

Shown is one variant, a direct
exchange of places between
two atoms. Other variants are
exchanges involving more
that 2 atoms (awhole "ring"
that "rotates").

Direct mechanisms are every
now and then suggested in the
literature to account for some
new diffusion phenomena,

but so far do not seem to
occur in crystals.

They may, however, play a
role (in analogous form)
when considering diffusionin
amorphous materials.

Thisisapossibility not yet discussed or observed. It is mentioned just to show that there might be more atomic
mechanisms than have been discovered so far. Imagine an extended interstitial moving through a crystal. The 10

or so atoms "inside" the extended interstitial move around a bit while the interstitial passes through and may end

up on lattice places different from the ones where they were - they have moved! It
effect playsarolein Si, but it well might occur at high temperatures.

And, maybe, there could be more?

istotally unknown if this

’ Again, itisimportant to keep in mind that you must clearly keep apart the movement of the "vehicle" - the vacancy,

interstitial, etc. - and the movement of the atom(s) whose diffusion is of interest to you!
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3.2.2 Self-Diffusion

3.2.2 Self-Diffusion

’ We ask ourselves how the regular atoms of a crystal diffuse. In the case of crystals with two or more different
atoms, we have to answer this question for each kind of atom separately.
’ The answer is easiest for asimple (mono)vacancy mechanism in simple elemental cubic crystals. The
self-diffusion coefficient is given by g - a2 times the number of jumps per sec that the diffusing particles make.
Since only lattice atoms that have a vacancy as a neighbor can jump, or, in other words, the number of lattice

atoms jumping per secisidentical to the number of vacancies jumping per sec, we obtain for the diffusion
coefficient of self-diffusion by a simple vacancy mechanism the following equations:

Dsp = ¢y Dy
D 2 Em G
SO =g-a2-ng-exp—— -exp——
° T P
N S Hm S H
sp =g-a-v eXxp — -exp— — -exp — -exp-— —
0 EP T T TP TP T
Hpp + He
Dgp := D* -exp— ———
kT

Gy, isthe free enthalpy for ajump, i.e. the free enthalpy barrier that must be overcome between two identical
positionsin the lattice.
In words: All the material dependent constants (including the migration and formation entropy) have been

lumped together in D*; and the exponential now contains the sum of the migration and formation energy of a
vacancy.

’ Lets discuss this equation a bit:

As mentioned before, we need an entropy of migration as a parameter of a point defect. In summary we need
four parameters correlated with an intrinsic point defect to describe its diffusion behavior (if we discount the
vibration frequency).

But only two parameters, the formation energy and the migration energy are of overwhelming importance.

Everything else may be summarized in a (more or less) constant pre-exponentia factor D* which contains
the entropies. Since the entropies may be temperature dependent (for Si thisis probably the case), you must
look at bit closer at your calculations if you are interested in precise diffusion data.

An Arrhenius-representation (Ig D vs. 1/T) will give astraight line, the slopeis given by Hy, + Hg. The
pre-exponential factor determines the intersection with the axis and is thus measurable.

Sinceit is much easier to measure diffusion coefficients compared to point defect densities, the sumHy,; +
Hg for point defects is mostly much better known than the individual energies. Some values are given in the
link.

Self-diffusion via self-interstitials follows essentially the same laws.

’ For self-diffusion in Si, we find the following (rather small) values : Dgp = (10-21 — 10-16) m2/sin the relevant
temperature regime. Detailed datain an Arrhenius plot for for self-diffusion in Si can be found in the link; some

numbers for Si self-diffusion as well as the migration parameters of vacancies and interstitials and afew elements
are also illustrated.

’ Now for an exercise. Self-diffusion means that the atomsin acrystal change their position. After some time all
atoms will have changed their positions at least once.
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3.2.2 Self-Diffusion

Our crystal just lying there, somehow changes identity. What does it mean? How long does it take? Do the
exercise 3.2-1!

| Exercise 3.2-1
| Crystal |dentity
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3.2.3 Diffusion of Impurity Atoms

3.2.3 Diffusion of Impurity Atoms

Diffusion of Impurity Atomsvia Vacanciesor Self-Interstitials

’ In this caseit is especially important not to confuse the vehicle (a point defect except in the case of the direct
interstitial diffusion) with the diffusing impurity atom.
What we want to have are the diffusion data for the impurity atom, not for the vehicle! We will not go into
details at this point, but it will come up later again.

Direct diffusion

’ Thisisthe simplest mechanism, it does not need point defects. It only works for interstitial impurity atoms. The
diffusion coefficient Dy;, issimply given by

S Hm
Dgir =g-a2-Vg-exp — - exp——
k kT

With H,,,, S;;, being the enthalpy and entropy of the jJumping impurity atom.

’ Thisisin most cases a sufficiently good approximation. The host lattice only enters in the form of the lattice

factor g (and to some extent in the migration entropy), but plays no other role. Thisis of course a source of
possible aberrations, because the ideal lattice implied in this case does normally not exist. Good examples for
directly diffusing impuritiesare O in Si, but there are many other elements.

The following table (taken from K. Graff, Metal Impuritiesin Si-Device Fabrication; Springer Seriesin
Mat. Science 24) gives afew more examples.

Interstitial Impurity Atom Diffusionin Si
Metal Hsol [€V] Ssol [K] Hm [eV] D*[m2/g] T-regime [OC]
Ti 3,05 4,22 1,79 1,45x102 950 - 1200
Cr 2,79 4,7 0,99 1,0x10-2 900 - 1250
Mn 2,80 711 0,6 5,7x104 900 - 1200
Fe 2,94 8,2 0,68 1,3x10-3 30- 1200
Co 2,83 7,6 0,53 4,2x10-3 900 - 1100
Ni 1,68 3,2 0,47 2,0x10-3 800 - 1300
Cu 1,49 24 0,43 4,7x10-3 400 - 900

H gy and Sg, denote the solubility enthalpies and -entropies. Thisis the extrinsic point defect quivalent of
the formation enthalpy and entropy of intrinsic point defects.
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3.2.3 Diffusion of Impurity Atoms

’ Here are some linksiillustrating impurity diffusion:
From areview of U. Gosele, we take the Arrhenius plot for many impurity atomsin Si.

In thislink we have a somewhat unusual way of showing impurity diffusionin Si.

’ Here some specidlities: Frank-Turnbull and Kick-out Mechanismin Si

U. Gosele essentially "invented” the kick-out mechanism around 1985 and demonstrated that it not only
provided an alternative to the already known Frank-Turnbull Mechanism, but does most likely control the

diffusion of Au, Pt, and possibly Znin Si.

The two mechanisms, although similar in many ways, lead under certain circumstancesto very different
diffusion profiles, as shown in the graph below taken from areview article (Fast Diffusionin
Semiconductors) accessible through the link.

Aum Si
200°C; 1h

001

005

Often it is quite difficult to decide from the data what kind of mechanism is operative. During the last few
years, some research groups studying diffusion in GaAs came to the conclusion that the diffusion
mechanismsin GaAs might be very different from what was accepted before (invoking, e.g., akick-out
mechanism).

Thereis no evidence so far that impurity diffusion in crystals of any kind of crystal involves adirect
mechanism. Direct mechanisms, however, are periodically suggested in the literature and should not be
ruled out per se.

’ So, what is the Message of this sub-chapter?

Many diffusion phenomena, especially in semiconductors or more complicated crystals, are still not very
well understood. Precise modeling of diffusion, however, depends sooner or later on using the correct
mechanisms.

Datafrom diffusion measurements are always (sometimes "encrypted") data on point defects.
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3.3.1 Determination of Diffusion Profiles

3.3 Experimental Approaches to Diffusion Phenomena

3.3.1 Determination of Diffusion Profiles

General Remarks

’ In atypical diffusion experiment, some impurity atoms are introduced into a host by first putting them (ideally) with & -
distribution at the surface.
After annealing for a specified time at a specified temperatures, some diffusion of the impurity atoms will have produced a
diffusion profile, i.e. asmooth curve of the concentration ¢ vs. depth x in the sample (usually plotted as lg(c) - x curve).
Some experimental careis necessary. Simply depositing the impurity atoms on the surface of the host crystal may not lead
to any results, because e.g. an impenetrable oxide layer may prevent any diffusion of the impurity atomsinto the crystal.
"Shooting" the impurity atoms into a surface-near area viaion implantation will overcome that problem, but may create its
own problems by generating point defects which change the regular diffusion behavior.
There are some well established standard methods for measuring the diffusion profiles after a successful diffusion
experiment (see below). Fitting the profile to the applicable solution of Ficks law will provide two results:

1. The numerical value of the diffusion coefficient D for the set of parameters considered.

2. Thevalidity of Fickslaw for this case as evidenced by the quality of thefit.
Of course, any "macroscopic” method for measuring profiles relies on having a profile on a, lets say, 10 um scalein the
first place, i.e. each impurity atom must have made many individual jumps.
Thiswill in most cases only happen at sufficiently high temperatures. Waiting along timeis not very effective; thisis
immediately clear if looking at diffusion phenomenain aglightly different way.

’ How then do we get experimental data at small concentrations or small numbers of jumps? The answer is: use radioactive tracer
atoms as the diffusing atoms, that can be found and identified in extreme small concentrations!

Tracer Techniques

’ Radioactive tracer atoms can be easily detected whenever they decay, emitting some high energy radiation.

If the half-life time of the tracer used isrelatively small (but still large enough to allow an experiment before the tracer has

vanished), alarge percentage of the tracer atoms can be detected by their decay products - typicaly a, B3, or y-rays. We thus
may have an extremely high detection efficiency, many orders of magnitude bel ow the detection limits of standard methods.

’ Lets consider the general way atracer experiment is done:

Deposit athin layer of the atoms that are to diffuse on the (very clean) host crystal. Some of those atoms should be a suitable
radioactive isotope of the speciesinvestigated. Use any deposition technique that works for you (evaporation, sputtering
techniques, sol-gel techniques ("painting it on™)...), but make sure that the deposition technique does not alter your substrate
(sputtering, e.g., may produce point defects) and that you have no "barrier layer" between the substrate and the thin layer.

Anneal for asuitable time at a specific temperature.

Remove thin layers from the surface (ideally one atomic layer after the other) by, e.g. sputtering techniques, anodic oxidation
and chemical stripping, ultramicrotomes, chemical dissolution, ...).

Measure the radioactivity of each layer.

With the known half-life of the tracer and the time since the deposition of the layer, calculate how many tracer atomsarein
your layer. From the measurement of many layers a concentration profile of the tracer atoms resullts.

’ Therest is conventiona: Fit the profile against a standard solution of Ficks law or against your own solution and extract the
diffusion coefficient for the one temperature used. This gives one data point. And then:

Repeat the experiment for several other temperatures, collecting data points for different temperatures.

From an Arrhenius representation of the measured diffusion coefficients you obtain Dy and an activation energy for the tracer
diffusion if your data are on a (halfway) straight line.

If this sounds tedious, it's becauseit is! Y ou appreciate why students doing a master or PhD thesis are so essential to research.
Still, nothing besats tracer experiments when it comes to sensitivity and accuracy.

Thereis, however, abasic problem that we have to discussif you want to extract information about the vehicle of the tracer
diffusion, i.e. about the vacancies or, in some cases, interstitials from atracer experiment. Thisis always the case when
dealing with self-diffusion.

The diffusion coefficient of the tracer atom is not necessarily identical with the diffusion coefficient for self-diffusion as
defined for the vehicles - usually vacancies.

’ Thereason for thisis that the tracer is a specific atom, while we look at many vacancies that help it along - and we must not
confuse the vehicle wih the diffusing impurity (or tracer) atom, as noted before. In particular, the jumps of the tracer atom may be

correlated with the jumps of the individual vacancy coming by.

In other words, whereas a particular vacancy may (and usually does) jump around in a perfect random walk pattern (i.e. each
jump contributes to the mean square displacement of the vacancy), the tracer atom may not move randomly!

Letslook at a simple example for atwo-dimensional vacancy diffusion mechanism.
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3.3.1 Determination of Diffusion Profiles

The tracer atom is marked in light blue, it has a vacancy as
aneighbor, ajump is possible.

\/\/\/\/
/\/\/\/

Vacancy and tracer atom have exchanged their positions.

AR
VAVAVAVAN

Next, the vacancy will jJump again - with equal probability on one of the 6 surrounding atom sites - so it istruly doing a
random walk. And one of those jumps goes back to position 7, with exactly the same probability as to the other available
sites.
The "viewpoaint" of the tracer atom, however, is different. It will jump back to site 6 with a higher probability than to the sites
1 - 5 because avacancy is available on 6, whereas for the other sites the passing of some other vacancy must be awaited.
Thereisacorrelation between jump 1 and jump 2 - there is no random walk. The jumps back will lead to wrong values of the
mean square displacement, because this combination does not add anything and occurs more frequently asit would for atruly
random walk.
’ The correlation effects between individual jumps of the tracer atom and the random jumps of vacancies can be calculated by a

rigid theory of diffusion by individual jumps - an outline is given in the advanced section.
Asaresult, these correlation effects (in all dimensions and for al |attice types) can be dealt with by defining a correlation
factor f that must be introduced into the equations coupling the tracer diffusion to the vacancy diffusion.

We define a correlation coefficient f4, that allows to correlate the diffusion coefficient for the (vacancy driven) self-diffusion,

Dgp(T), as measured by a tracer experiment, to the diffusion coefficient for self-diffusion, Dgy as given by theory via the equation

Dgp(T) = f1y - Dgy

Asan example for areal correlation factor we look at f4y,(cub), the correlation factor for self-diffusion mediated by single
vacanciesin acubic lattice. It is given in agood approximation by

2 5/6 fcc
flv(CUb) =1 - ~ =
z 3/4 bce

With z = number of nearest neighbors.

’ To illustrate the correlation phenomena, suppose that f = 0. In this case, even for wildly moving vacancies (Dgp >> 0), the tracer
atoms would not move - we would not observe any diffusion.

Thiscaseisfully realized for one-dimensional diffusion, whereit is aso easy to see what happens - just consider a chain of
atoms with one vacancy:

00000C 0000

The vacancy may move back and forth the chain like crazy - the tracer atom (light blue) at most moves between two position,
because on the average there will be just as many vacancies coming from the right (tracer jumps to the left) than from the left
(tracer jumpsto the right).
’ Correlation coefficients can be calculated - as long as the diffusion mechanism and the lattice structure are known. They are,
however, very difficult to measure which is unfortunate, because they contain rather direct information about the mechanism of
the diffusion. The calculations, however, are not necessarily easy.
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3.3.1 Determination of Diffusion Profiles

Impurity atoms, which may have some interaction with a vacancy, may show complicated correlation effects because in this
case the vacancy, too, does no longer diffuse totally randomly, but shows some correlation to whatever the impurity atom
does.
If akick-out mechanism is active, the tracer atom might quickly be found immobile on alattice site, whereas another atom -
which however will not be detected because it is not radioactive - now diffuses through the lattice. The correlation factor is
very small.

’ Some examples for correlation coefficients are given in the table for a simple vacancy mechanism (after Seeger). The correct

value from extended calculations is contrasted to the value from the simple formula given above.

; coordination _
Latticetype number z fiy=1-2/z fqyv (correct)

Onedim. lattice

Chain 2 0 0

Two dim. lattices

hex. close packed 6 0.6666 0,56006

square 4 0,5 0,46694

Threedim. lattice

cub. primitive 6 0,6666 0,65311
Diamond 4 05 05

bcc 8 0,75 0,72722
fcc 12 0,83 0,78146

Other Methodsfor Measuring Diffusion Coefficients

’ Thereis a plethora of methods, some are treated in other lecture courses. In what follows a few important methods are just
mentioned.

’ Concentration Profile Measurements

Secondary lon Mass Spectrometry (SIM S) for direct measurements of atom concentrations. Thisis the most important
method for measuring diffusion profiles of dopantsin Si (and other semiconductors).

Rutherford Backscattering (RBS) for direct measurements of atom concentrations.
Various methods for measuring the conductivity as a function of depth for semiconductors which corresponds more or less
directly to the concentration of doping atoms. In particular:
« Capacity as afunction of the applied voltage ("C(U)") for MOS and junction structures)
« Spreading resistance measurements
« Microwave absorption.
Local growth kinetics of defects, e.g. the precipitation of an impurity, contain information about the diffusion, e.g.
« Growth of oxidation induced stacking faultsin Si
« Impurity -"free" regions around grain boundaries (because the impurities diffused into the grain boundary where they
are trapped).
An example for a"diffusion denuded" zone along grain boundaries can be seen in the illustration

’ Annealing experiments
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3.3.1 Determination of Diffusion Profiles

These experiments are in a class of their own. In this case point defects which have been rendered immobile in alarge
supersaturation, e.g. by rapid cooling from high temperatures, are made mobile again by controlled annealing at specified
temperatures. Since they tend to disappear - by precipitation or outdiffusion - measuring a parameter that is sensitive to point
defects - e.g. the residual resistivity - will give kinetic data.

A classical experiment produces supersaturated point defects by irradiation at low temperatures with high-energy electrons (a
few MeV). The energy of the electrons must be large enough to displace single atoms - Frenkel pairs may be formed - but not
large enough to produce extended damage "cascades’.

Annealing for a defined time at a specified temperature will remove some point defects which is monitored by measuring the
residua resitivity - aways at the same very low temperature (usually 4K). Repeating the sequence many times at increasing
temperatures gives an annealing curve. A typical annealing curve may look like this:

E
Ap [Cem] (cl.ose Frenkel pairs

Impurities
o

— Interstitials ]
Vacancies

T T TIK]

What "impurities' meansin this context is left open. They may form small complexes, interact with nearby vacancies or
interstitials, or whatever.

The interpretation of the stepsin the annealing curves as shown above is ot uncontested. The " Stuttgart school" around A.
Seeger has acompletely different interpretation, invoking the "crowdion", than the (more or less) rest of the world.

’ Methods measuring single atomic jumps

This ultimate tool can be used if the point defects have rather low symmetry. The best example is the dumbbell configuration
of theinterstitial or interstitial carbon in Fe

In the classical experiment the crystal is uniaxially deformed at not too low temperatures. The dumbbells will, given enough
time, orient themselves in the direction of tensile deformation (there is more space available, so the energy islower) and thus
carry some of the strain. We have more dumbbellsin one of the three possible orientations than in the two other ones (see
below)

:

Possible dumb-

=0 .:.bell orientations
@

H“ = o= 3 JOR
Gm e e mm — g Qee
G o0 s O $os 2

s o= T (T) @

Thetensile stressis now suddenly relieved. Besides the purely and instantaneous €elastic relaxation, we will now see a slow
and temperature dependent additional relaxation because the dumbbells will randomize again. The time constant of this
process directly contains the jump frequency for dumbbells. This effect, which existsin many variants, is called "Snoek
effect”.

If you do not use a static stress, but a periodic variation with a certain frequency w, you have a whole new world of
experimental techniques!

" Last, there are methods which monitor the destruction (or generation) of someinternal order in the material. The prime technique
isNuclear Magnetic Resonance (NM R), which monitors the decay of nuclear magnetic moments which were first oriented in a
magnetic field and then disordered by atomic jumps, i.e. diffusion. The M 63bauer effect may be used in this connection, too.
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4.1.1 Experimental Techniques for Studying Point Defects

4. Experimental Techniques for Studying
Point Defects

4.1 Point Defects in Equilibrium

Differential Thermal Expansion Method

’ How can we measure directly the type and concentration of point defects and, if we do it as function of
temperature, extract the formation energies and formation entropies?
Simple question - but there is essentially only one direct method: Measure the change of the | attice constant
a, i.e. Aa, and the change in the specimen dimension, Al, (one dimension is sufficient) simultaneously as a
function of temperature.

What you have then is the differential thermal expansion method also called the Al/l — Aa/a method.
This method was invented by Simmons and Balluffi around 1960.

The basic ideaisthat Al/l —Aa/a (with | = length of the specimen = I(T, defects)) contains the regular thermal
expansion and the dimensional change from point defects, especially vacancies.

Thisis so because for every vacancy in the crystal an atom must be added at the surface; the total volume of
the vacancies must be compensated by an approximately equal additional volume and therefore an additional
Al.

If we subtract the regular thermal expansion, which is simply given by the change in lattice parameter,

whatever is left can only be caused by point defects. The difference then gives directly the vacancy
concentration.

For a cubic crystal with negligible relaxation of the atoms into the vacancy (so the total volume of the
vacancy provides added volume of the crystal), we have

LAl Aall
30— —-—0= v — G
ml a g

With ¢, = vacancy concentration, ¢; = interstitial concentration.

We have to take the difference of the concentration because interstitial atoms (coming from avacancy) do
not add volume.

’ Thisis quite ingenious and straightforward, but not so easy to measure in practice.

The measurements of both parameters have to be very precise (in the 10-° range); you also may have to
consider the double vacancies.

But successful measurements have been made for most simple crystalsincluding al important metals, and it
is this method that supplied the formation energies and entropies for most important materials.

’ The link shows a successful measurement of Al/l —Aa/afor Ag + 4% Sb.

’ Some values mostly obtained with that method are shown in the following table (after Seeger):
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4.1.1 Experimental Techniques for Studying Point Defects

Element cyat Ty He [eV] Sk [K]
Cu 2x 104 1,04 0,3
Ag 1,7x 104 0,99 0,5
Au 7,2x 104 0,92 0,9
Al 9x 104 0,65 0,8
Pb 1,7x 104 05 0,7
Na 7x 104
Li 4x 104
Cd 6,2x 104
Kr 3x103
Si no values, Al/l — Aa/a= 0 even at ultra-high precision

Positron Annihilation

’ A somewhat exotic, but till rather direct method is measuring the time constant for positron annihilation as a
function of temperature to obtain information about vacancies in thermal equilibrium.

What you do is to shoot positrons into your sample and measure how long it takes for them to disappear by

annihilation with an electron in aburst of y - rays. The time from entering the sample to the end of the
positron isits (mean) lifetime.

It is rather short (about 10-10 seconds), but long enough to be measured, and it varies with the concentration
of vacancies in the sample. Since electrons are needed for annihilation and a certain overlap of the wave
functions has to occur, the lifetime 1 is directly related to the average electron concentration available for
annihilation.

A nice feature of these technique isthat the positron is usually generated by some radioactive decay event,
and then announces its birth by some specific radiation emitted simultaneously. Its death is also marked by
specific y rays, so al you have to do isto measure the time between two special bursts of radiation.

’ Vacancies are areas with low electron densities. Moreover, they are kind of attractive to a positron because they
form a potential well for a positron - once it fallsin there, it will be trapped for some time.

Since an average life time of 10-10 sislarge enough for the positron, even after it has been thermalized, to
cover rather large distances on an atomic scale, some positrons will be trapped inside vacancies and their
percentage will depend on the vacancy concentration.

Inside a vacancy the electron density is smaller than in the lattice, the trapped positrons will enjoy a
somewhat longer life span. The average life time of all positronswill thus go up with an increasing number
of vacancies, i.e. with increasing temperature.

’ This can be easily quantified in a good approximation as follows.

file:///L|/hyperscripts/def_en/kap_4/backbone/r4_1_1.html (2 of 4) [02.10.2007 16:16:58]


file:///L|/hyperscripts/def_en/kap_4/basics/b4_1_1.html

4.1.1 Experimental Techniques for Studying Point Defects

L ets assume that on the average we have ng (thermalized) positrons in the lattice, split into nq "free"
positrons, and n, positrons trapped in vacancies; i.e.

Ng = n1+ no

The free positrons will either decay with afixed rate A given by A, = 1/t4, (with T, = (average) lifetime), or
are trapped with a probability v by vacancies being present in a concentration c,.

The trapped positrons then decays with arate A, which will be somewhat smaller then A, because it lives a
little longer; its average lifetime is now T».

The change in the partial concentration then becomes

dn,
— =—-Agtv-oy)-n
dt
dn2
— = —)\2'n2+V'C\/'n1
dt

’ This system of coupled differential equation is easily solved (we will do that as an exercise), the starting
conditions are

ni(t=0) = ng

ny(t=0) = 0

The average lifetime 1, which is the weighted average of the decay paths and what the experiment provides,
will be

01 + 1p-v-cy O
T =17  ——0O
Ml +717-v-cyO

’ The probability v for a positron to get trapped by avacancy can be estimated with relative ease, the following
principal "S" - curveis expected. By now, it comes as no surprise that no effect was found for Si.
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4.1.1 Experimental Techniques for Studying Point Defects

A
T [see]
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’ The advantage of positron annihilation experimentsisits relatively high sensitivity for low vacancy
concentrations (106 - 10-7 is agood value), the obvious disadvantage that a quantitative evaluation of the data
needs the trapping probability, or cross section for positron capture.

’ Some examples of real measurements and further information are given in the links:
Lifetime of positronsin Ag
Life time of positronsin Si and Ge.
Paper (in German): Untersuchung von Kristalldefekten mit Hilfe der Positronenannihilation
A large table containing values for Hg as determined by positron annihilition (and compared to values

obtained otherwise) can be found in the link

| Exercise 4.1-1

| Derivethe Formulafor T

More Direct Methods for Measuring Point Defect Properties
’ There isn't much. Some occasionally used methods are

Measurements of the resistivity. Very suitable to ionic crystalsif the mechanism of conduction isionic
transport via point defects. But you never know for sure if you are measuring intrinsic equilibrium because
"doping" by impurities may have occurred.
Specific heat asafunction of T. While there should be some dependence on the concentration of point
defects, it is experimentally very difficult to handle with the required accuracy.
Measuring electronic noise. Thisisarelatively new method which relies on very sophisticated noise
measurements. It is more suited for measuring diffusion properties, but might be used for equilibrium
conditions, too. Theillustration in the link shows a noise measurement obtained upon annealing frozen-in
point defects.

’ However, the view presented above (and in the chapters before) is not totally unchallenged. There are serious

scientists out there who claim that things are quite different, especially with respect to equilibrium concentrations
of vacancies in refractory metals, because the formation entropy is much higher than assumed.

The method of choiceto look at thisis calorimetry at high temperature, i.e. the measurement of the specific
heat. A champion of thisviewpointisY. Kraftmakher, who just published a book to this point.
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4.2.1 Point Defects in Non-Equilibrium

4.2 Point Defects in Non-Equilibrium

Quenching Experiments

’ The basic idea behind these techniquesis simple: if you have more point defects than what you would
have in thermal equilibrium, it should be easier to detect them. There are several methods, the most
important one being quenching from high temperatures. Lets ook at this technique in its extreme form:

A wire of the material to be investigated is heated in liquid and superfluid He Il (i.e. aliquid with a
"oo" |large heat conduction) to the desired temperature (by passing current through it).
Astonishingly, thisis easily possible because the He-vapor produced acts as a very efficient thermal
shield and keeps the liquid He from exploding because too much heat is transferred.
After turning off the heating current, the specimen will cool extremely fast to He || temperature (=
1K). There is not much time for the point defects being present at the high temperature in thermal
equilibrium to disappear via diffusion; they are to alarge percentage "fr ozen-in". The frozen-in
concentration can now be determined by e.g. measuring the residual resistivity p,es Of the wire.

Theresidua resistivity issimply the resistivity found around 0 K. It is essentially dominated by
defects because scattering of electrons at phononsis negligible.

’ There are, however, many problems with the quenching technique.

The quenching speed (= 104 °C/swith the He || technique) may still be too small to definitely rule
out agglomeration off point defects (look at exercise 4.2-1). The cure for this problem isto repeat
the experiments at different quenching speeds and to extrapolate to infinite quenching speed. What
you will see may look like the schematic representation below.

lep / Ideal quenching experiment

|

Real quenching experiments at
different quenching rates

L 4

L/kT

Recorded is the residual resistivities after a quenched sample was annealed for some specified time
at the temperature T. This can bedone in-situ; after the anneal the specimen is cooled down again
and p; o5 IS Measured

’ Plastic deformation is the next big problem.

The unavoidable large temperature gradients introduced by quenching produce large mechanical
stress which may cause severe plastic deformation or even fracture of the specimen. Plastic
deformation, in turn, may severley distort the concentrations of point defects and fracture of a
sample simply terminates an experiment.

’ Finaly, impurities, always there, may influence the resullts.

Since impurities may drastically influence the residual resistance, measurements with "dirty"
specimens are always open to doubt. In addition, it is not generally easy to avoid in-diffusion of
impurity atoms at the high temperatures needed for the experiment.

Quenching experiments with Si, for example, did not so far give useful data. If any "good" curves
were obtained, it was invariably shown (later) that the results were due to impurity in-diffusion
(usualy Fe).
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4.2.1 Point Defects in Non-Equilibrium

’ Theillustration in the link gives an example for the processes occurring during quenching for Au
obtained by calculations and demonstrates the difficulties in extracting data from raw measurements.

’ Exercise 4.2-1
| Diffusion during cooling

Other Methods
’ If all elsefails: try to find agglomerates of point defects looking at your specimen with the transmission
electron microscope (TEM), with X-ray methods or with any other method that is applicable.

Accept local equilibrium: Don't cool too fast, alow time for agglomerates to form. Conclude from

the type of agglomerate, from their density and size, and whatever additional information you can
gather, what kind of point defect with what concentration was prevalent.

Thisisrather indirect and qualitative, but:

’ It gives plenty of information. There are many examples where TEM contributed vital information to
point defect research. Especialy, it was TEM that gave thefirst clear indication that self-interstitials
play aroleinthermal equilibrium in Si and some rough numbers for formation energies and migration

energies (Foll and Kolbesen 1978).
’ In the link an example of the agglomerates of self-interstitials as detected by TEM is given. The major

experimental problem in this case wasto find the agglomerates. Their density is very low and at the
required magnification huge areas had to be searched.

’ A very new way of looking at point defects is to use the scanning tunneling micr oscope (STM) and to

look at the atoms on the surface of the sample. Thisideais not new; before the advent of the STM field
ion microscopy was used with the same intention, but experiments were (and are) very difficult to do
and severely limited.

Oneideaisto investigate the surface after fracturing the quenched sample in-situ under ultra-high
vacuum (UHV) conditions. Thiswould give the density of vacancies on the fracture plane from
which the bulk value could be deduced.

An interesting set of STM images of point defectsin GaAs from recent research is given in the
link.

Vacancies can be seen, but there are many problems: The image changes with time - the density of
point defects goes up! Why - who knows?

The interpretation of what you see is also difficult. In the example, several kinds of contrasts
resulting from vacancies can be seen, probably because they are differently charged or at different
depth in the sample (STM also "sees" defects one or two layers below the top layer). It needs
detailed work to interprete the images as shown in the link.

More recent pictures show the surface of Si or Pt, including point defects, in astonishing clarity.

But we still will have to wait afew more years to see what contributions STM will be able to make
towards the understanding of point defects.
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4.3.1 Specialities

4.3. Specialities

Special Methodsfor lonic Crystals
’ Inionic crystals, experimental investigations must follow different routes.

The Al/l - Aa/amethod will not work by definition for Frenkel defects, where the concentrations of
vacancies and interstitials are identical and the volume change zero.
It might work for Schottky defects and mixed defects. In the latter case, however, it will not be

possible to obtain information for the individual point defect typesinvolved because the
measurement only givesintegra numbers.

Quenching is difficult if not impossible, because ionic crystals are usually bad heat conductors; this

will limit the quenching speed to useless values. In addition, ionic crystals tend to be brittle and
they usually fracture upon quenching.

Positrons will also be trapped by the negatively charged ions, the technique is not applicable.

And last but not least: it is quite unlikely that what you find are equilibrium numbers anyway,
because point defectsin ionic crystals are so sensitive to deviations from stochiometry and so on.

’ Fortunately, there are methods specific for ionic and oxide crystals; most prominent is the measurement
of the ionic conductivity which is often mediated by point defects and therefore can be used to gather
information about point defects.

Spectroscopic methods (ionic crystal are often transparent) may be applied, too.

Other Methods

’ Since most properties of crystals are structure sensitive, many more methods exist that give some
information about point defects. In what follows we give alist of some tools (which might be elaborated
upon in due time):

Deep level transient spectroscopy (DLTYS). Thisis a standard method for the investigation of
impurity atomsin semiconductors.

Electron spin resonance (ESR)

Infrared spectroscopy (IR spectroscopy); especially in the form of Fourier-transform
| R-spectroscopy (FTIR). The method of choiceto investigate O and C in Si.
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5.1.1 Dislocations

5. Dislocations

5.1 Basics

5.1.1 Burgers and Line Vector

The smelting and forging of metals marks the beginning of civilization - the art of working metals was for
thousands of years the major "high tech" industry of our ancestors.
Trial and error over this period of time lead to an astonishing degree of perfection, as can be seen all
around us and in many museums. In the state museum of Schleswig-Holstein in Schleswig, you may
admire the damascene blades of our Viking ancestors.

Two kinds of iron or steel were welded together and forged into a sword in an extremely complicated
way; the process took several weeks of an expert smith'stime. All thistoil was necessary if you wanted
asword with better properties than those of the ingredients. The damascene technology, shrouded in
mystery, was needed because the vikings didn't know athing about defectsin crystals - exactly like the
Romans, Greek, Japanese (india) Indians, and everbody else in those times.
Y ou might enjoy finding and browsing through several modules to this topic which are provided "on the
side" in this Hyperscript.
Exactly why metals could be plastically deformed, and why the plastic deformation properties could be
changed to a very large degree by forging (and magic?) without changing the chemical composition, was a
mystery for thousands of years.
No explanation was offered before 1934, when Taylor, Orowan and Polyani discovered (or invented?)
independently the dislocation.

A few years before (1929), U. Dehlinger (who, around 1969 tried to teach me basic mechanics) almost
got there, he postulated so-called "Verhakungen” as lattice defects which were supposed to mediate
plastic deformation - and they were amost, but not quite, the real thing.

It is a shame up to the present day that the discovery of the basic scientific principles governing metallurgy,
till the most important technology of mankind, did not merit a Nobel prize - but after the war everything that

happened in science before or during the war was eclipsed by the atomic bomb and the euphoria of a radiantly
beautiful nuclear future. The link pays tribute to some of the men who were instrumental in solving one of the

oldest scientific puzzles of mankind.

Didlocations can be perceived easily in some (mostly two-dimensional) structural pictures on an atomic scale.
They are usually introduced and thought of as extralattice planesinserted in the crystal that do not extend
through all of the crystal, but end in the dislocation line.
Thisis shown in the schematic three-dimensional view of an edge dislocations in a cubic primitive
lattice. This beautiful picture (from Read?) shows the inserted half-plane very clearly; it serves as the
quintessential illustration of what an edge dislocation looks like.

Look at the picture and try to grasp the concept. But don't forget

1. Thereisno such crystal in nature: All real lattices are more complicated - either not cubic primitive or
with more than one atom in the base.

2. The exact structure of the dislocation will be more complicated. Edge dislocations are just an extreme
form of the possible dislocation structures, and in most real crystals would be split into "partial”
dislocations and look much more complicated.
We therefore must introduce a more general and necessarily more abstract definition of what constitutes a
dislocation. Before we do that, however, we will continue to look at some properties of (edge) dislocationsin
the ssimplified atomistic view, so we can appreciate some elementary properties.
First, we look at asimplified but principally correct rendering of the connection between dislocation
movement and plastic defor mation - the elementary process of metal working which contains all the
ingredients for a complete solution of all the riddles and magic of the smith’s art.
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5.1.1 Dislocations

E I N

Generation of an edge Movement of the Sh'fto?ftﬁgecl:pgg half
dislocation dislocation sfter the didocation
by a shear stress through the crystal emerged

This sequence can be seen animated in the link

Thiscallsfor alittle exercise

| Exercise5.1-1
| Find the mistakes

What the pictureillustratesis a simple, but far-reaching truth:

Plastic defor mation proceeds - atomic step by
atomic step - by the

generation and movement of dislocations

The whole art of forging consists simply of manipulating the density of dislocations, and, more
important, their ability of moving through the | attice.

After adislocation has passed through a crystal and left it, the lattice is complely restored, and no traces
of the dislocation isleft in the lattice. Parts of the crystal are now shifted in the plane of the movement of
the dislocation (left picture). This has an interesting consquence: Without dislocations, there can be no
elastic stresses whatsoever in a single crystal! (discarding the small and very localized stress fields
around point defects).

We aready know enough by now, to deduce some elementary properties of dislocations which must be
generally valid.

1. A dislocation is one-dimensional defect because the lattice is only disturbed along the dislocation
line (apart from small elastic deformations which we do not count as defects farther away from the core).
The dislocation line thus can be described at any point by aline vector t(x,y,z).

2. Inthe dislocation cor e the bonds between atoms are not in an equilibrium configuration, i.e. at their
minimum enthalpy value; they are heavily distorted. The dislocation thus must possess energy (per unit
of length) and entropy.
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5.1.1 Dislocations

3. Didlocations move under the influence of external forces which cause internal stressin acrystal. The
area swept by the movement defines a plane, the glide plane, which always (by definition) contains the
dislocation line vector.

4. The movement of a dislocation moves the whole crystal on one side of the glide plane relative to the
other side.

5. (Edge) dislocations could (in principle) be generated by the agglomeration of point defects:
self-interstitial on the extra half-plane, or vacancies on the missing half-plane.

Now we add a new property. The fundamental quantity defining an arbitrary dislocation isits Bur ger s vector
b. Its atomistic definition follows from a Burgers cir cuit around the dislocation in the real crystal, whichis

illustrated below

Left picture: Make a closed circuit that encloses the dislocation from |attice point to lattice point (later
from atom to atom). Y ou obtain a closed chain of the base vectors which define the lattice.
Right picture: Make exactly the same chain of base vectorsin a perfect reference lattice. It will not close.

The special vector needed for closing the circuit in the reference crystal is by definition the Burgers
vector b.

It follows that the Burgers vector of a (perfect) dislocation is of necessity alattice vector. (We will see later
that there are exceptions, hence the qualifier "perfect”).

But beware! Asaways with conventions, you may pick the sign of the Burgers vector at will.

In the version given here (which is the usual definition), the closed circuit is around the dislocation, the
Burgers vector then appearsin the reference crystal.

Y ou could, of course, use a closed circuit in the reference crystal and define the Burgers vector around
the dislocation. Y ou aso have to define if you go clock-wise or counter clock-wise around your circle.
You will always get the same vector, but the sign will be different! And the sign is very important for
calculations! So whatever you do, stay consistent!. In the picture above we went clock-wise in both
Cases.

Now we go on and learn anew thing: There is a second basic type of dislocation, called screw dislocation.
Its atomistic representation is somewhat more difficult to draw - but a Burgers circuit is still possible:
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5.1.1 Dislocations

Y ou notice that here we chose to go clock-wise - for no particularly good reason

If you imagine awalk along the non-closed Burges circuit, which you keep continuing round and round, it
becomes obvious how a screw dislocation got its name.

It aso should be clear by now how Burgers circuits are done.

But now we will turn to a more formal description of dislocations that will include all possible cases,
not just the extreme cases of pure edge or screw dislocations.
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5.1.2 Volterra Construction and Consequences

We now generalize the present view of dislocations as follows:

1. Dislocation lines may be arbitrarily curved - never mind that we cannot, at the present, easily imagine the
atomic pictureto that.

2. All lattice vectors can be Burgers vectors, and as we will see later, even vectors that are not lattice vectors
are possible. A general definition that encloses al cases is needed.
As ever so often, the basic ingredients needed for "making" dislocations existed before dislocations in crystals were
conceived. Volterra, coming from the mechanics of the continuum (even crystals haven't been discovered yet), had
defined all possible basic deformation cases of a continuum (including crystals) and in those elementary
deformation cases the basic definition for dislocations was aready contained!
The link shows Volterra basic deformation modes - three can be seen to produce edge dislocations in crystals,
one generates a screw dislocation.
Three more cases produce defects called "disclinations'. While of theoretical interest, disclinations do not
really occur in "normal" crystals, but in more unusual circumstances (e.g. in the two-dimensional lattice of flux
lines in superconductors) and we will not treat them here.
Volterrdsinsight gives us the tool to define dislocationsin avery genera way. For thiswe invent alittle
contraption that helps to imagine things: the "Volterra knife", which has the property that you can make any
conceivable cut into a crystal with ease (in your mind). So lets produce dis ocations with the Volterra knife:
1. Make a cut, any cut, into the crystal using the Volterraknife.

The cut is always defined by some plane inside the crystal (here the plane indicated by he red lines).
The cut does not have to be on aflat plane, but we aso do not gain much by making it "warped”. The picture
shows aflat cut, mainly just becauseit is easier to draw.

The cut is by necessity completely contained within aclosed line, the red cut line (most of it on the outside of
the crystal).

That part of the cut line that isinside the crystal will define the line vector t of the dislocation to be formed.

2. Move the two parts of the crystal separated by the cut relative to each other by atranslation vector of the lattice;
allowing elastic deformation of the lattice in the region around the dislocation line.

The translation vector chosen will be the Burgers vector b of the dislocation to be formed. The sign will
depend on the convention used. Shown are movements leading to an edge dislocations (left) and a screw
didocation (right).

ry

kol §

3. Fill in material or take some out, if necessary.
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5.1.2 Volterra Construction and Consequences

Thiswill always be necessary for obvious reasons whenever your chosen trandation vector has a component
perpendicular to the plane of the cut.

Shown is the case where you have to fill in material - always preserving the structure of the crystal that was
cut, of course.

Left: After cut and movement. Right: After filling up the gap with crystal material.

bt b 1|

4. Restore the crystal by "welding" together the surfaces of the cut.

Since the displacement vector was atranslation vector of the lattice, the surfaces will fit together perfectly
everywhere - except in the region around the dislocation line defined as by the cut line.

A one-dimensional defect was produced, defined by the cut line (= line vector t of the dislocation) and the
displacement vector which we call Burger s vector b.

It israther obvious (but not yet proven) that the Burgers vector defined in thisway is identical to the one
defined before. Thiswill become totally clear in the following paragraphs.

From the Volterra construction of a dislocation, we can not only obtain the simple edge and screw dislocation that
we aready know, but any dislocation. Moreover, from the Volterra construction we can immediately deduce a new
list with more properties of dislocations:

1. The Burgers vector for agiven disocation is always the same, i.e. it does not change with coordinates,
because there is only one displacement for every cut. On the other hand, the line vector may be different at
every point because we can make the cut as complicated aswe like.

2. Edge- and screw didlocations (with an angle of 90° or 0°, resp., between the Burgers- and the line vector) are
just special cases of the general case of amixed dislocation, which has an arbitrary angle between b and t that
may even change along the dislocation line. The illustration shows the case of a curved dislocation that
changes from a pure edge dislcation to a pure screw dislocation.

& & @ @ @ @ @

- @ @ @ ® @ @ @ @

We are looking at the plane of the cut (sort of a semicircle centered
in the lower |eft corner). Blue circles denote atoms just below,
red circles atoms just above the cut. Up on the right the dislocation is
apure edge dislocation, on the lower left it is pure screw. In between
it ismixed. In the link this dislocation is shown moving in an

animated illustration.
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5.1.2 Volterra Construction and Consequences

3. The Burgers vector must be independent from the precise way the Burgers circuit is done since the Volterra
construction does not contain any specific rules for acircuit. Thisis easy to see, of course:

_IJ ZTART .'EESTMTI
* b b b —
I i
|I |I II |I I-l II II |I |I | II | ll-l II
—— I | IH - - '|| VI | Ill.I_I [
I|I I|I \ ".I I." | !"E | ll' I|I I|I \ ".I I'II II !'i |' ||'
[ g [ [
I R I O I I I
T [ l [ [ [ 1 l“—l“—l [ ]
o Two arbitrary aternative Burgers circuits.
Old circuit The colors serve to make it easier
to keep track of the steps.

4. A dislocation cannot end in the interior of an otherwise perfect crystal (try to make a cut that ends internally
with your Volterraknife), but only at

« acrystal surface

« aninterna surface or interface (e.g. agrain boundary)
» adidocation knot

« onitself - forming adislocation loop.

5. If you do not have to add matter or to take matter away (i.e. involve interstitials or vacancies), the Burgers
vector b must be in the plane of the cut which has two consequences:

« The cut plane must be planar; it is defined by the line vector and the Burgers vector.

» Thecut planeisthe glide plane of the dislocation; only in this plane can it move without the help of
interstitials or vacancies.

The glide plane is thus the plane spread out by the Burgers vector b and the line vector t.
6. Plastic deformation is promoted by the movement of dislocationsin glide planes. Thisis easy to see:
Extending your cut produces more deformation and thisisidentical to moving the dislocation!

7. The magnitude of b (= b) isameasure for the " strength” of the dislocation, or the amount of elastic
deformation in the core of the dislocation.

A not so obvious, but very important consequence of the Voltaterra definition is

8. At adidlocation knot the sum of all Burgers vectorsis zero, £b = 0, provided all line vectors point into the

knot or out of it. A dislocation knot is simply a point where three or more dislocations meet. A knot can be
constructed with the Volterra knife as shown below.

Statement 8. can be proved in two ways. Doing Burgers circuits or using the Voltaterra construction twice. At the
same time we prove the equivalence of obtaining b from aBurgers circuit or from a Voltaterra construction.

Letslook at adislocation knot formed by three arbitrary dislocations and do the Burgers circuit - always taking
the direction of the Burgers circuit from a"right hand" rule
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- bs

Single circuits
yield by or by

Equivalent circuits
yield by

Since the sum of the two individual circuits must give the same result as the single "big" circuit, it follows:

by = by + b

Or, more generally, after reorienting all t -vectors so that they point into the knot:

Now lets ook at the same situation in the Voltaterra construction:

We make afirst cut with a Burgers vector b, (the green onein the illustration below).

Now we make a second cut in the same plane that extends partially beyond the first one with Burgers vector b,

(thered line). We have three different kinds of boundary lines: red and green where the cut lines are
distinguishable, and black where they are on top of each other. And we have a so produced a dislocation knot!

Obvioudly the displacement vector for the black line, which is the Burgers vector of that dislocation, must be
the sum of the two Burgers vectors defined by the two cuts: b = b; + b,. So we get the same result, because our
line vectors all had the same "flow" direction (which, in this case, is actually tied to which part of the crystal
we move and which one we keep "at rest").
If we produce a dislocation knot by two cuts that are not coplanar but keep the Burgers vector on the cut plane, we
produce a knot between dislocations that do not have the same glide plane. As an immediate consequence we
realize that this knot might be immobile - it cannot move.
A simple exampleis shown below (consider that the Burgers vector of the red dislocation may have aglide
plane different from the two cut planes because it is given by the (vector) sum of the two original Burgers
vectorsl).
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Cut 2

Enot
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Dislocations

We can now draw some conclusion about how dislocations must behave in circumstances not so easy to see
directly:
Letslook at the glide plane of a dislocation loop. We can easily produce aloop with the Volterra knife by

keeping the cut totally inside the crystal (with areal knife that could not be done). In the example the
dislocation is an edge dislocation.

The glide plane, aways defined by Burgers and line vector, becomes aglide cylinder! The dislocation loop
can move up or down on it, but no lateral movement is possible.

T,

M
\

What would the glide plane of a screw dislocation loop look like? Well there is no such thing as a screw
dislocation loop - you figure that one out for yourself!

A pure (straight) screw dislocation has no particular glide plane since b and t are parallel and thus do not
define a plane. A screw dislocation could therefore (in principle) move on any plane. We will see later why
there are still some restrictions.

This leaves the touchy issue of the sign convention for the line vector t. Thisisimportant! The sign of the line
vector determines the sign of the Burgers vector, and the Burgers vector, including sign, is what you will use for
many calculations. Thisis so because for a Burgers circuit you must define if you go clockwise or
counter-clockwise around the line vector, using the right-hand convention. We will go clockwise!

The easiest way of dealing with this isto remember that the sum of the Burgers vectors must be zero if all line
vectors either point into the knot or away fromit.

Aslong as only three dislocations meet at one point, there is no big problem in being consistent in the choice
of line vector and Burgers vectors, once you started assigning signs for the line vectors, you can throw in the
Burgers vector. There is however no principal restriction to only three dislocations meeting at one point; in this
case the situation is not always unambiguous; we will deal with that later. Thisis not as easy asit seems. We
will do alittle exercise for that.

Last we define: The circuit isto close around the dislocation; the circuit in the reference crystal then defines
the Burgers vector.

’ Exercise5.1-2

| Sign of Burgers- and Line Vectors

We see that one can get pretty far with the purely geometric consideration of dislocations following aVoltaterra
kind of construction. But some questions with respect to properties allowed by the Volterra construction remain
open if we pose them for real crystals:

Aretherereal knotswhere 4, 5, 6, or even more dislocations meet? We sure can produce them with the knife.
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5.1.2 Volterra Construction and Consequences

Aretherereally dislocations with all kinds of translation vectors, e.g. b = a<100> or b = a<123>? They are al
alowed.

Is the geometry of a network arbitrary, i.e. are the angles between dislocations in aknot arbitrary?
Areread didocationsreally arbitrarily curved?
Then there are questions to which the Volterra construction has nothing to say in the first place:

What determines dislocation reactions, e.g. the formation of anew dislocation? A very simple reactions takes
place, for example, whenever aknot moves as shown in the illustration below.

—

Movement of knot Newly formed dislocation

Do dislocations repel or attract each other? Or, more generally: How do they interact with other defects
including point defects, other dislocations, grain boundaries, precipitates and so on?

To be able to answer these questions, we have to consider the elastic energy of a dislocation; we will do thisin the
next chapter.
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5.2 Elasticity Theory, Energy , and Forces

5.2.1 General Remarks and Basics of Elasticity Theory

General Remarks

Thetheory of elasticity is quite difficult just for simple homogeneous media (no crystal), and even more difficult for
crystals with dislocations - because the dislocation core cannot be treated with the linear approximations always used
when the math gets tough.
Moreover, relatively simple analytical solutions for e.g. the elastic energy stored in the displacement field of a
dislocation, are only obtained for an infinite crystal, but then often lead to infinities.

As an example, the energy of one dislocation in an otherwise perfect infinite crystal comes out to be infinite!

This looks not very promising. However, for practical purposes, very simple relations can be obtained in good
approximations.
Thisisespecially true for the energy per unit length, the line ener gy of a dislocation, and for the forces between
dislocations, or between dislocations and other defects.
A very good introduction into the elasticity theory as applied to dislocation is given in the text book I ntroduction to
Dislocations of D. Hull and D. J. Bacon. We will essentially follow the presentation in this book.

The atomsin a crystal containing a dislocation are displaced from their perfect lattice sites, and the resulting
distortion produces a displacement field in the crystal around the dislocation.

If there is a displacement field, we automatically have astressfield and astrain field, too. Try not to mix up
displacement, stress and strain!

If welook at the picture of the edge dislocation, we see that the region above the inserted half-planeisin

compr ession - the distance between the atomsis smaller then in equilibrium; the region below the half-planeisin
tension.

The dislocation is therefore a source of internal stressin the crystal. In all regions of the crystal except right at
the dislocation core, the stress is small enough to be treated by conventional linear elasticity theory. Moreover,
it is generally sufficient to use isotropic theory, simplifying things even more.

If we know what is called the elastic field, i.e. the relative displacement of all atoms, we can calcul ate the force
that a dislocation exerts on other dislocations, or, more generally, any interaction with elastic fields from other
defects or from external forces. We also can then calculate the energy contained in the dastic field produced by
adidocation.

Basics of Elasticity Theory

Thefirst element of elasticity theory is to define the displacement field u(x,y,2), where u isavector that defines the
displacement of atoms or, since we essentially consider a continuum, the displacement of any point P in astrained
body from its original (unstrained) position to the position P' in the strained state.

The displacement vector u(x, y, z) is then given by

uX(Xv y! Z)
ux,y, 2 = yxy,2)
L‘IZ(Xi y! Z)]

Displacement of P to P'
by displacement vector u

The components uy , Uy, U, represent projections of u on the x, y, z axes, as shown above.

The vector field u, however, contains not only uninteresting rigid body translations, but at some point (x,y,2) all the
summed up displacements from the other parts of the body.

If, for example, along rod is just elongated along the x-axis, the resulting u field, if we neglect the contraction,
would be
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5.2.1 Elasticity Theory, Energy and Forces

Uy = const - X u, =0 u, =0

But we are only interested in the local deformation, i.e. the deformation that acts on avolume element dV after it
has been displaced some amount defined by the environment. In other words, we only are interested in the
changes of the shape of a volume element that was a perfect cube in the undisplaced state. In the example above,
all volume element cubes would deform into arectangular block.

We thus resort to the local strain €, defined by the nine components of the strain tensor acting on an el ementary cube.
That thisistrue for small strains you can prove for yourself in the next exercise.

Applied to our case, the nine components of the strain tensor are directly given in terms of the first derivatives of
the displacement components. If you are not sure about this, activate the link.

We obtain the normal strain asthe diagonal elements of the strain tensor.

~ duy ~ duy _ du,
EXX_'— syy - SZZ_’—

dx dy dz

The shear strains are contained in the rest of the tensor:

Eyz = &y = %2 Dduy +diD
Ddz dyD

gzxzaxzzl/ggdi ,du_XD
dx dz U
d d

Exyzﬁyx:1/2-D Ux_{_im
Ogy  dx U

Within our basic assumption of linear theory, the magnitude of these componentsis << 1. The normal strains simply
represent the fractional change in length of elements parallel to the x, y, and z axes respectively. The physical meaning
of the shear strainsis shown in the following illustration

A small area element ABCD in the xy plane has been strained to the shape A B' C' D' without change of area. The
angle between the sides AB and AD, initially parallel to x and y, respectively, has decreased by 2e,,. By rotating,

but not deforming, the element as shown on the right-hand side, it is seen that the element has undergone asimple
shear. The simple shear strain often used in engineering practice is 2¢,,, as indicated.

The volume V of asmall volume element is changed by strain to
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5.2.1 Elasticity Theory, Energy and Forces

VHAV = V- (1+gy) (1+g,) (1+gy,)

The fractional change in volume A, known as the dilatation, istherefore

A=— =&y T &y t &y
V

AV

Note that A isindependent of the orientation of the axesx, y, z

Exercise 5.2-1

Displacement field and strain

Smple elasticity theory links the strain experienced in a volume element to the forces acting on this element. (Difficult
elasticity theory links the strain experienced in any volume element to the forces acting on the macroscopic body!).
The forces act on the surface of the element and are expressed as stress, i.e. asforce per area. Stressis propagated in a
solid because each volume element acts on its neighbors.

A complete description of the stresses acting therefore requires not only specification of the magnitude and
direction of the force but also of the orientation of the surface, for as the orientation changes so, in general, does

the force.

Consequently, nine components must be defined to specify the state of stress. Thisis shown in theillustration

below.

&z

qQ.
Oy
Oy
qx —liy
L’ Y
IJV qa, O —

We have a volume element, here alittle cube, with the
components of the stress shown as vectors

Since on any surface an arbitrary force vector can be applied,
we decompose it into 3 vectors at right angles to each other.
Since we want to keep the volume element at rest (no
translation and no rotation), the sum of al forces and moments
must be zero, which leaves us with 6 independent components.

The stress vectors on the other 3 sides are exactly the opposites
of the vectors shown

A picture of the components of the strain tensor would look
exactly likethis, too, of course.

The component 0jj, wherei andj can bex, y, or z, isdefined as the force per unit area exerted in the + i direction
on aface with outward normal in the + j direction by the material outside upon the material inside. For aface with
outward normal in the —j direction, i.e. the bottom and back facesin the figure above, gj; is the force per unit area
exerted in the —i direction. For example, oy, actsin the positive y direction on the top face and the negative y
direction on the bottom face.

The six components with i unequa to j are the shear stresses. It is customary to abbreviate shear stresses with T.
In dislocation studies T without an index then often represents the shear stress acting on the slip planein the slip

direction of acrystal.

As mentioned above, by considering moments of forces taken about x, y, and z axes placed through the centre of
the cube, it can be shown that rotational equilibrium of the element, i.e. net momentum = 0, requires

zy = Iy

Tx = Txz Ty = Tyx

file:///L|/hyperscripts/def_en/kap_5/backbone/r5_2_1.html (3 of 6) [02.10.2007 16:17:00]


file:///L|/hyperscripts/def_en/kap_5/exercise/e5_2_1.html
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It therefore does not matter in which order the subscripts are written.

The three remaining components oyy, 0y, 0z, are the normal components of the stress. From the definition given

above, apositive normal stress resultsin tension, and a negative one in compression. We can define an effective
pressur e acting on a volume element by

For some problems, it is more convenient to use cylindrical polar coordinates(r, 6, 2).

Thisis shown below; the proper volume element of cylindrical polar coordinates, is essentialy a " piece of cake'.

Gy

Isit apiece of cake indeed? Well - no!

The picture above is straight form the really good book of I ntroduction to Dislocations of D. Hull and D. J.
Bacon, but it isalittle bit wrong. But since it was only used a basic illustration, it did not produce faulty reasoning
or equations.

The picture below showsiit right - think about it a bit yourself. (Hint: Imagine a situation, where you apply an
uniaxial stress and try to keep your volume element in place)

The stresses are defined as shown above; the stress 0z 0 €0, isthe stress in z-direction on the 8 plane. The

second subscript j thus denotes the plane or face of the "dlice of cake" volume element that is perpendicular to the
axis denote by the sunscript - asin the cartesian coordinate system above. The yellow plane or face thusisthe 8
plane, green corresponds to ther plane and pink denotes the z plane
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Material Laws Relating Stressand Strain

In the simplest approximation (which is ailmost always good enough) the relation between stress and strain istaken to
belinear, asin most "materia laws' (take, e.g. "Ohm'slaw", or the relation between electrical field and polarization
expressed by the dielectric constant); it is called "Hooke's law".
Each strain component is linearly proportional to each stress component; in full generality for anisotropic media
we have, e.g.

€11 = 11017 + @pp0pp + QAg3033 + 10010 + A13013 + 3023

For symmetry reasons, not al &; are independent; but even in the worst case (i.e. triclinic lattice) only 21
independent components remain.
For isotropic solids, however, only two independent &; remain and Hooke's law can be written as

2G g t A (Exx t &y t &)

Q
1

yy = 2G &y + A (8 + Eyy t E)

Q
N
I

2G &, + N (Ex * gy + €,7)

Oyxy = 2G - &y

Oy, = 2G - &y

2G - g,y

Q
N
x

I

The two remaining material parameters A and G are known as L amé constants, but G is more commonly known
asthe shear modulus.
It is customary to use different elastic moduli, too. But for isotropic cubic crystals there are always only two
independent constants; if you have more, some may expressed by the other ones.
Most frequently used, and most useful are Y oung's modulus, Y, Poisson'sratio, v, and the bulk modulus, K.
These moduli refer to ssimple deformation experiments:
Under uniaxial, normal loading in the longitudinal direction, Young s modulus Y equalsthe ratio of longitudinal
stress to longitudinal strain, and Poisson'sratio v equals the negative ratio of lateral strain to longitudina strain.
The bulk modulus K is defined to be — p/AV (p = pressure, AV = volume change). Since only two material
parameters are required in Hooke's law, these constants are interrelated by the following equations
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Y = 2G-(1 + v)
A

vV ——

2.(\ + G)
Y

S 3.1 -2v)

Typical values of Y and v for metallic and ceramic solids are in the ranges Y = (40-600) GNm—2 and v = (0.2 — 0.45),
respectively.

Elastic Energy

A materia under strain contains elastic energy - it isjust the sum of the energy it takes to move atoms off their
equilibrium position at the bottom of the potential well from the binding potential. Since energy is the sum over al

displacements time the force needed for the displacement, we have:
Elastic strain energy Eg per unit volume = one-half the product of stress times strain for each component. The

factor 1/2 comes from counting twice by taking each component. Thus, for an element of volume dV, the elastic
strain energy is

dEel =Y. Z Z Ojj 'sij -dVv
i=XY,Z | =XV,Z

For polar or cylindrical coordinates we would get asimilar formula.

We do not actually have to calculate the energy with this formula (be grateful), but you must remember: If we have the
stress field, we can calculate the strain field. If have both, we can calculate the energy.

And if we have the energy we have (almost) everything! Minimizing the energy gives the equilibrium
configuration; gradients of the energy with respect to coordinates give forces, and so on.
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5.2.2 Stress Field of a Straight Dislocation

Screw Dislocation

The elastic distortion around a straight screw dislocation of infinite length can be represented in terms of a cylinder
of elastic material deformed as defined by Volterra. The following illustration shows the basic geometry.

A screw dislocation produces the deformation shown in the left hand picture. This can be modeled by the
Volterra deformation mode as shown in the right hand picture - except for the core region of the dislocation, the
deformation isthe same. A radia dlit was cut in the cylinder parallel to the z-axis, and the free surfaces
displaced rigidly with respect to each other by the distance b, the magnitude of the Burgers vector of the screw
dislocation, in the z-direction.

In the core region the strain is very large - atoms are displaced by about alattice constant. Linear elasticity
theory thusis not avalid approximation there, and we must exclude the core region. We then have no problem
in using the V olterra approach; we just have to consider the core region separately and add it to the solutions
from linear elasticity theory.

The elastic field in the dislocated cylinder can be found by direct inspection. First, it is noted that there are no
displacementsin the x and y directions, i.e. uy =u, =0.

In the z-direction, the displacement varies smoothly from 0 to b as the angle 6 goes from 0 to 21t This can be
expressed as

b-0
211

u, =

b b
= — . tan—i(y/x) = — -arctan (y/x)
21 21

Using the equations for the strain we obtain the strain field of a screw dislocation:

Exx = yy T€z T &y = €y = 0

b y b sin©
SXZ = SZX:_ — e L —

4t x2+y2 4n r

b X b cos O
syz szy: —_— = —_—

4t x2+y2 4m r

The corresponding stressfield is also easily obtained from the relevant equations:
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5.2.2 Stress Field of a Straight Dislocation

Oxx = Oyy = Ozz = Oyxy = Oyx 0
b y G:b sin @
Oyy = Op=— —— = — s —
X i 2m  x2+y2 2m r
G-b X G:b cos 6
O,, = 0, = = —_—
& id 2  x2+y2 21 r

In cylindrical coordinates, which are clearly better matched to the situation, the stress can be expressed viathe

following relations:

Og 2z -

Oyy COSB + Oy, sinB

Oy, SinB + o, cosd

Similar relations hold for the strain. We obtain the simple equations:

€92

Og 2

b
= &9 =

41r

G-b
= 0= ——

21T

The elastic distortion contains no tensile or compressive components and consists of pure shear. 0,4 acts parallel to
the zaxisin radia planes of constant 8 and g, acts in the fashion of atorque on planes normal to the axis. The field

exhibits complete radial symmetry and the cut thus can be made on any radial plane 8 = constant. For a dislocation
of opposite sign, i.e. aleft-handed screw, the signs of al the field components are rever sed.

Thereis, however, a serious problem with these equations:

Stress/ strain

T Core

linear regton
elasticity

Eeal
curve

Tn

A

L4

The stresses and strains are proportional to 1/r and
therefore diverge to infinity asr — 0 asshownin the
schematic picture on the | eft.

This makes no sense and therefore the cylinder used for the
calculations must be hollow to avoid r - values that are too
small, i.e. smaller than the core radiusry,.

Real crystals, of course, do (usually) not contain hollow

dislocation cores. If we want to include the dislocation
core, we must do this with a more advanced theory of
deformation, which means a non-linear atomistic theory.
There are, however, ways to avoid this, provided oneis
willing to accept a bit of empirical science.

The picture simply illustrates that strain and stress are, of
course, smooth functions of r. The fact that linear elasticity
theory can not cope with the core, does not mean that there
isarea problem.
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5.2.2 Stress Field of a Straight Dislocation

How largeisradiusrg or the extension of the dislocation cor e? Since the theory used is only valid for small strains,
we may equate the core region with the region were the strain is larger than, say, 10% . From the equations above it

is seen that the strain exceeds about 0,1 or 10% whenever r = b. A reasonable value for the dislocation coreradius
rothereforeliesin therange b to 4b, i.e. rg = 1 nm in most cases.

Edge Didlocation

The stressfield of an edge dislocation is somewhat more complex than that of a screw dislocation, but can also be
represented in an isotropic cylinder by the Volterra construction.

Using the same methodology asin the case of a screw dislocation, we replace the edge dislocation by the
appropriate cut in acylinder. The displacement and strains in the z-direction are zero and the deformation is
basically a"plane strain”.

Itisnot aseasy asin the case of the screw dislocation to write down the strain field, but the reasoning follows
the same line of arguments. We simply look at the results:

Q
N
I
<
—
[
X
X
+
o
T

We used the abbreviation D = Gb /21t (1 —v) .

The stressfield has, therefore, both dilational and shear components. The largest normal stressis a,,, which acts
parallel to the Burgers vector. Since the slip plane can be defined asy = 0, the maximum compressive stress (Oy IS
negative) actsimmediately above the slip plane and the maximum tensile stress (0, iS positive) acts immediately
below the dlip plane.

The effective pressure (given by the sum over the normal components of the stress) is

_2:(1+v)-D y
B 3 X2 + y2

We thus have compressive stress above the dlip plane and tensile stresses below - just as deduced from the
gualitative picture of an edge dislocation; graphical representation of the stress field of an edge dislocation is

shown in the link.

For edge dislocations (and screw dislocations too), the sign of the stress- and strain components reverses if the sign of
the Burgers vector is reversed.

Again, we have to leave out the dislocation core; the core radius again can be taken to be about 1b - 4b
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5.2.2 Stress Field of a Straight Dislocation

We are left with the case of amixed dislocation. Thisis not a problem anymore. Since we have alinear isotropic
theory, we can just take the solutions for the edge- and screw component of the mixed dislocation and superimpose,
i.e. add them.

Asfar as"simple" elasticity theory goes, we now have everything we can obtain. If better descriptions are needed,
the matter becomes extremely complicated! But thankfully, this simple description is sufficient for most
applications.
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5.2.3 Energy of a Dislocation
5.2.3 Energy of a Dislocation

With the results of the elasticity theory we can get approximate formulas for the line ener gy of adislocation and the elastic interaction with other
defects, i.e. the forces acting on dislocations.

The energy of adislocation comes from the elastic part that is contained in the elastically strained bonds outside the radius rg and from the
energy stored in the core, which is of course energy sitting in the distorted bonds, too, but is not amenable to elaticity theory.
Thetotal energy per unit length E;; is the sum of the energy contained in the elastic field, Eg, and the energy in the core, Eqqe.

Euw = Eg * Ecore

Do not confuse energies E with Youngs modulus Y which is often (possibly here) written as E, too! From the context it is always clear what is
meant.

Using the formulafor the strain energy for a volume element given before, integration over the total volume will give the total elastic energy Egq

of the dislocation. The integration is easily done for the screw dislocation; in what follows the equations are always normalized to a unit of
length.

dEg(screw) = 1.1 -dr - (Og, €7 * 00 €0) = 4T-1-dr - G- (eg »)?

Eg(screw) = —— .

R
G -p? J dr G- R
41t P

Theintegration runs from r, the core radius of the dislocation to R, which is some as yet undetermined external radius of the elastic cylinder
containing the dislocation. In principle, R should go to infinity, but thisis not sensible as we are going to see.
The integration for the edge dislocation is much more difficult to do, but the result is rather simple, too:

G-b? R
Ea(edge) = ——— -In—
1l — v) o

So, apart from the factor (1 —v), thisisthe same result as for the screw dislocation.
Let us examine these equations. There are anumber of interesting properties; moreover, we will see that there are very simple approximations to be
gained:
1. Thetotal energy U of a dislocation is proportional to itslength L.

U =Ey-L=L(EBg + Ecord

Since we always have the principle of minimal energy (entropy does not play arolein this case), we can draw aimportant conclusion:

A dislocation tends to be straight between its two "end points' (usually dislocation knots). That is afirst rule about the direction a dislocation
likes to assume.

2. The line energy of an edge dislocation is always larger than that of a screw dislocation since (1 —v) < 1. With v = 1/3, we have Eg o, = 0,66
Eedge
This means that a dislocation tends to have as large a screw component as possible. Thisis a second rule about the direction a dislocation likes to

assume which may be in contradiction to the first one. It is quite possible that a dislocations needs to zig-zag to have as much screw character as
geometrialy allowed - it then cannot be straight at the same time.
3. The elastic part of the energy depends (logarithmically) on the crystal size (expressed in R), for an infinite crystal it isinfinite (c0)! Does this make
any sense?
Of course this doesn't make sense. Infinite crystals, however, do not make sense either. And in finite crystals, evenin big finite crystals, the
energy isfinite!
Moreover, in most real crystalsit is not the outer dimension that counts, but the size of the grains which are usually quite small. In addition, if
there are many dislocations with different signs of the Burgers vector, their strain fields will (on average) tend to cancel each other. So for
practical cases we have afinite energy.

4. The elastic part of the energy also depends (logarithmically) on the core radius r,
5. The energy is a weak function of the crystal (or grain size) R.

Taking an extremely small value for rq, e.g. 0,1 nm, we obtain for In (R/rg) an extreme range of 20,7 - 2,3 if we pick extreme values for R of 100
mm or 1 nm, respectively. A more realistic range for R would be 100 pm - 10 nm, giving In (R/rg) = 13,8 - 4,6. Grain size variations, within
reasonable limits, thus only provide afactor of 2 - 3 for energy variations.
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5.2.3 Energy of a Dislocation
We will now deduce an approximation for the line energy that is sufficiently good for most purposes.

We equate r with the magnitude of the Burgers vector, |b|. This makes sense because the Burgers vector is a direct measure of the "strength” of a
dislocation, i.e. the strength of the displacement in the core region.

We need avalue for the energy in the core of the dislocations, which so far we have not dealt with. Since thereis no easy way of calculating that
energy, we could equate it in afirst approximation with the energy of melting. That would make sense because the dislocation core is comparable
inits degree of distortion to the liquid state. More sophisticated approaches end up with the best simple value:

G-b?

Ecore = ——
21

There are, however, other approaches, too.

Thetotal energy for ro = b then becomes

G-b2 O R ]

EtOt = . Dln'— + 2|:|
o b 0
More generally, the following formulais often used
G-b? 0 R 0
Ett =—— - On— + BO
aml-v) g b 0

with B = pure number best approximating the core energy of the particular case. Often B = 1 is chosen, leading to

G-b? U R O
Etot = cOn— + 10
4nl-v) g b 0

For the last equation bear in mind that In(e) = 1.

The In term is not very important. To give an example; it is exactly 4ttfor e - R = 3,88 x 104 |b), i.e. for R = 5 um; the total energy in this case would
be E;q = 2G - b2.

In avery general way we can write

EtOt = Q'G'bz

And a (from measurements) isfound to bea = 1,5 ....0,5. If we do not care for factors in the order of unity, we get the final very simple formula
for theline energy of adislocation

Etota = G - b2

With this expression for the line energy of adislocation, we can deduce more properties of dislocations.
6. Dislocations always tend to have the smallest possible Burgers vector.

Since for Burgers vectors by larger than the smallest translation vector of the lattice and thus expressible by I = by + b, ; by » = some shorter
vectors of the lattice, we always have
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5.2.3 Energy of a Dislocation

(b)2+ ()2 < b2

A splitting into smaller Burgers vectors is therefore always energetically favorable.
There are therefore no dislocations with large Burgers vectors!
If adislocation would have alarge Burgers vector, it would immediately split into two (or more) dislocations with smaller Burgers vectors.

Thisis always possible, because in the Volterra construction you can always replace one cut with the trand ation vector b by two cuts with b; and
by sothat b=b; + by.

h by

S -

7. Theline energy isin the order of 5 €V per Burgers vector..

This makes dislocations automatically non-equilibrium defects. They will not come into being out of nothing like point defects for free enthalpy
reasons.

8. Theline energy ( = energy per length) has the same dimension as a a force, it expresses aline tension, i.e. aforce in the direction of the line vector
which tries to shorten the dislocation.

It actually is aforce, as we can see from the definition of such alinetension F:

du
dL

We thus may imagine a dislocation as a stretched rubber band, which tries to be as short as possible. But one should be careful not to overreach
this analogy. Ask yourself: What keeps dislocations loops stable?
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5.2.4 Forces on Dislocations

5.2.4 Forces on Dislocations

Again, detailed calculations are complicated and must be done numerically in most cases. For practical
usage, however, we will find simple approximations by using the energy formula already derived; this

will be good enough for most cases.

First, we have to see that for the movement of a dislocation on its glide plane, we only need to
consider the shear stress on this plane. Thisis so, because only force components lying in the glide
plane of the dislocation can have any effect on dislocation motion in the glide plan. The normal
components of the the stressin the glide plane system act perpendicular to the glide plane and thus
will not contribute to the dislocation movement.

Both shear stress components in the glide plane act on the dislocation. Important, however, is only
their combined effect in the direction of the Burgers vector, which is called the resolved shear
Stress Ty es.

However, while the resolved shear stress points into the direction of the Burgers vector, the
direction of the force component acting on, i.e. moving the dislocation, is always perpendicular to
the line direction! Thisis so because the force component in the line direction does not do anything
- adislocation cannot move in its own direction. or, if you like that better: If it would - nothing
happens! The whole situation is outlined below

& Force
or stress

on crystal /'

z

—
=

Glide

plane

Force on
disloc ation

Resolved shear
l > x stress in glide

plane

Under the influence of the force F acting on the dislocation and which we want to calculate, the
dislocation moves and work W is done given by W = For ce - distance. Lets ook at the ultimate work
that can be done by moving one dislocation.
If the dislocation moves in total through the crystal on a glide plane with the area A, the upper half
of the crystal moves by b relative to the lower half which is the distance on which work has been
done.

This only happensif a shear force acts on the crystal, and this force obviously does some work W.
Thiswork is done bit by bit by moving the dislocation through the crystal, so we must identify the
force that does work with the force F acting on the dislocation.

The acting shear stressin this caseisthen 1 = Force F/area A. and force F is that component of the
external force that is contained or "resolved” in the glide plane of the dislocation as discussed
above.

For the total work W done by moving half of the crystal a distance equal to the Burgers vector b we
obtain

W=A:1'b

With A - T = Force; b = Burgesvector = distance.
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5.2.4 Forces on Dislocations

Wejust aswell can divide W into incremental steps dW, the incremental work done on an incremental

areathat consists of an incremental piece dl of the dislocation moving an incremental distance ds, as
shown below

The relation between the incremental work dW to the total work W then isjust the ratio between the
incremental areato the total area; we have

dw ds-dl
WA
Putting everything together, we obtain
dl -ds

dw =A.1-b-——= 1-b -dl -ds
A

Anincremental piece of work dW can always be expressed as a force times an incremental distance
ds;i.e.dW=F - ds. Theforce F acting on the incremental length dI of dislocation then obviously
isF=t-b-dl

If we now redefine the force on adislocation slightly and refer it to the (incremental) unit length dl,

i.e. wetake F* = F/dl, we obtain avery ssimple for mula for the magnitude of the force (it is not a
vector!) acting on aunit length of adislocation:

F*=1-b

Thisis easy - but beware of the sign of the force! You must get all the signs right (Burgers vector, line
vector, T) to get the correct sign of the force! We aso will drop the "*" in what follows, because as with
all other properties of dislocations, it is automatically per unit length if not otherwise specified.
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5.2.4 Forces on Dislocations

The important part is . It is the component of the shear strain in the glide plane in the direction of
b. Thisis normally not a known quantity but must be calculated, e.g. by a coordinate transformation
of agiven external stress tensor to a coordinate system that contains the glide plane as one of its
coordinate planes.
Again, we must realize that the Force F as defined above is always perpendicular to the dislocation line;
even if T = constant everywhere on the glide plane.
Thisis somewhat counterintuitive, but always imagine the limiting case of a pure edge and screw
dislocation: The same external T must exert aforce on ascrew dislocation that is perpendicular to
the force on an edge dislocation to achieve the same deformation (think about that; looking at the
pictures helps!)
Thiscalsfor alittle exercise

’ Exercise 5.2-2
| Forceson a disocation

In reality, dislocations can rarely move in total because they are usually firmly anchored somewhere.
For a straight edge dislocation anchored at two points (e.g. at immobile dislocation knots) responding to
aconstant 1, we have the following situation.

o

F o T
T T
_Ey_> i}
A
(0]

The forces resulting from the resolved shear stress (red arrows) will "draw out" the dislocation into
astrongly curved dislocation (on the right). A mechanical equilibrium will be established as soon as
the force pulling back the dislocation (its own line tension) exactly cancels the external force.

The middle picture shows an intermediate stage where the dislocation is still moving.

It is possible to write down the force on a dislocation as atensor equation which automatically takes care
of the components - but this gets complicated:

First we need to express the force as a vector with components in the glide plane and perpendicul ar
to it. We define F = Force on a dislocation = (Fy, Fg)

With Fg = component in the glide plane, Fy = component vertical to the glide plane. Only Fg is of
interest, it is given by
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5.2.4 Forces on Dislocations

Fo=[(o5-b)-n] -j

T

Normal vector perpendicular
to dislocation

Normal vector glideplane
Vector

Scalar

Vector perpendicular to 1

\F\F\FI{

Note that scalars, vectors and tensors are combined to form ultimately a vector. The colors of the
brackets code the respective property as outlined in the margin.

The consequences of this equation and the quantities used areillustrated below. Also note that you have
many ways to confuse signs!

Using the formulas derived so far, we can find an important quantity, the shear stress necessary to
maintain a certain radius of curvature for a dislocation.
If welook at theillustration above, we see that for a certain stress, the force will draw the

dislocation into a curved line, but for some configuration there will be a balance of force, because
the line tension of the dislocation pulls back.

We can calculate the balance of power by looking at an incremental piece of dislocation with aradius of
curvature R. The acting force F is balanced by the linetension T
Let's assume we increase the radius R of an incremental curved piece by dl. The acting force

needed for thisisF =1 - b - dl and we havedl =R - d®. The picture below shows avery large dO
for clarity.

dl/d© = Radius of curvature

Line tension = Gb?

Thelinetension T = Gb2 is "pulling back", but only a small component T_g is directly opposing F.

The component T_g isgiven by
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5.2.4 Forces on Dislocations

T =T-8n(dG/2) =dG/2 for small dO

Since there are two components we have the balance of power

T:d© = Gb2dO =1-b-dl =1-b-R-dO

The equilibrium radius R, obtained for a shear stress 1 is thus

Gb
RO:.—

Thiswill have important consegquences becuase the equation states that a dislocation will move
"forever" if T > Gb/Ry,i,, with Ri,, denoting some minimal radius of curvature that cannot be

decreased anymore.
From looking at force balance, we now can answer the guestions posed before for a dislocation network:

The sum of the line tensions at a knot must be zero, too (or at least very small), otherwise the knot
and the dislocations with it will move. We thus expect that 3-knots will always show angles of

(approximately) 1200°.

T 1_2__0.?/
T %< — i
T \

Knots with more than three dislocations will, asarule, split into 3-knots, since otherwise there can
be no easy balance of linetensions. In real cases, however, you must also consider the geometry of
the anchor points (are they fixed, can they move?), the change of line energy with the character of
the dislocation and the new total length of the dislocations.

bs=b; + by
\\131 [ s by
—
T
b ®
Anchor points
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5.2.5 Interactions Between Dislocations

We will first investigate the interaction between two straight and parallel dislocations of the same kind.

If we start with screw dislocations, we have to distinguish the following cases:

onone @ @
/ glideplane "
, A
\ on different ‘"«A

Interaction of glide planes .2

screw dislocations
on one
i Q>0
\ b anti /' glide plane o
parallel \‘ on different - Mg gmrrnn

glide plane B

b parallel

In analogy, we next must consider the interaction of edge dislocations, of edge and screw dislocations
and finally of mixed dislocations.
The case of mixed dislocations - the general case - will again be obtained by considering the
interaction of the screw- and edge parts separately and then adding the results.
With the formulas for the stress and strain fields of edge and screw dislocations one can calcul ate the
resolved shear stress caused by one dislocation on the glide plane of the other one and get everything
from there.
But for just obtaining some basic rules, we can do better than that. We can classify some basic cases
without calculating anything by just exploiting one obvious rule:
The superposition of the stress (or strain) fields of two dislocations that are moved toward each
other can result in two basic cases:
1. The combined stress field is now larger than those of a single dislocation. The energy of the
configuration than increases and the dislocations will repulse each other. That will happen if
regions of compressive (or tensile) stress from one dislocation overlaps with regions of compressive
(or tensile) stress from the other dislocation.
2. If the combined stress field is lower than that of the single dislocation, they will attract each
other. That will happen if regions of compressive stress from one dislocation overlaps with regions
of tensile stress from the other dislocation

This leads to some simple cases (look at the stress/ strain pictures if you don't seeit directly)

1. Arbitrarily curved dislocations with identical b on the same glide plane will always repel each
other.

. . ______ Repulsive Interactions
Ty
- == F o bl'bg-]_,-"rr
2
< T T —>  because of increase in

F the combined strain field
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5.2.5 Interactions Between Dislocations

2. Arbitrary dislocations with opposite b vectors on the same glide plane will attract and annihilate
each other

. attraction on any plane and annihilation
. . for ideal screw dislocations

attraction and annihilation on identical
T glide plane for ideal edge dislocations

Edge dislocations with identical or opposite Burgers vector b on neighboring glide planes may
attract or repulse each other, depending on the precise geometry. The blue double arrowsin the

picture below thus may signify repulsion or attraction.

The general formulafor the forces between edge dislocations in the geometry shown aboveis

F _ Gb2 X - (X2 _ y2)
T (@+y22
. Gh2  y-(:2+y?)
Y 211 —v) (X2 + y2)2

Fory =0, i.e. the same glide plane, we have a 1/x or, more generally a 1/r dependence of the force
on the distance r between the dislocations.

Fory<O0or y >0 wefind zones of repulsion and attraction. At some specific positions the forceis
zero - thiswould be the equilibrium configurations; it is shown below.

The formulafor F isjust given for the sake of completeness. Since the dislocations can not move

iny-direction, it is of little relevance so far.

Poszible equilibrium configurations
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5.2.5 Interactions Between Dislocations

The illustration in the link gives a quantitative picture of the forces acting on one dislocation on its glide
plane as a function of the distance to another dislocation.
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5.3.1 Movement of Dislocations

5.3 Movement and Generation of Dislocations

5.3.1 Kinks and Jogs

Kinksin Dislocations

In most crystals and under most circumstances there is no such thing as a straight dislocation. Real
dislocations contain kinks and jogs - sudden deviations from a straight line on atomic dimensions.
These defects within a defect may strongly influence the mobility of dislocations and are thus of
importance.
They owe their existence first of all to the fact that dislocations always "live" inacrystals-ina
periodic arrangement of atoms. We have not used that fact so far, except in arather abstract way for
the very definition of dislocations with the Volterra cut. Now it is time to appreciate the effects of
the crystal on the fine structure of dislocatons.
Kinks (and jogs) may be produced by several mechanisms, in particular they may be formed by the
movement of the dislocation.
Firgt, let'slook at kinks. For that we first have to consider the concept of the Peler|s potential of a
dislocation.
Consider the movement of an edge dislocation as shown below. The green circles symbolize the
last atom on the inserted half- plane of an edge dislocation. In local equilibrium its distance to the
atomsto the left or right will be same for basic reasons of symmetry, cf. the perspective drawing of
an edge dislocation.

I — direction of movement

\VAVAVAVAVAVAVAV/

Peierls Potential for movement

If the dislocation isto move, the last atom (and the ones above to some extent) has to press against
the neighboring atom on one side and move away from the atom on the other side. That isclearly a
situation with a higher energy which can be cast into a potential energy curve as shown in the
illustration. At some point when both lattice plans are most affected, there is a maximum and a new
minimum as soon as the dislocation has moved by one Burgers vector. The minimaand maxima of
this Peierls potential are along directions of high symmetry.

To overcome the maximum of the Peierls potential, the stress has to be larger than some intrinsic
critical shear stress T

The Peierls potential defines special low-energy directions in which the dislocation prefersto lie. Thisis
the third rule for directions that dislocations like to assume! (Try to remember the first and second rule,

or use the links).
In other words, the inserted half-plane for the easy-to-imagine case of an edge dislocation should be
clearly defined and should be in a symmetric position between its neighbour planes - exactly aswe
always have drawn it.
A dislocation that is amost, but not quite an edge dislocation, thus would prefer to be a pure edge
dislocation over long distances and concentrate the "non-edginess" in small parts of its length as
shown below. The same is true for screw dislocations, even so it is not quite as easy to contempl ate.
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5.3.1 Movement of Dislocations
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The dislocation runs in the minima of the Peierls potential as long as possible and then crosses over
briskly when it has to be. The transition from one Peierls minimum to the next oneis called a kink
as shown in the picture above.

The kinks that come into existence in thisway are called geometric kinks. But there is also a second
kind, the thermal equilibrium (double)-kink, i.e. acrossing over to aneighboring Peierls valley
followed by a"jump" back.

A kink, or better a double-kink, is simply a defect in an otherwise straight dislocation line, adding
some energy and entropy. Since the formation ener gy of a double kink is not too large, they will
be present in ther mal equilibrium with concentrations following a standard Boltzmann
distribution.

To make that perfectly clear: While adislocation by itself is never in thermal equilibrium, i.e. will
never form spontaneously by thermal activation, thisis not true for the defects it may contain.
Double-kinks, seen as defects in a dislocation line, form and disappear spontaneoudly, if sufficient
thermal energy is available; their number or density thus will follow a Boltzmann distribution.

Once athermal double-kink has been formed, the two single kinks may move apart; if the processis
repeated, we have a new mode of dislocation movement for an otherwise perhaps immobile
dislocation. Thisis shown below.

i
geometric thermally
kinks :l activated separation
formation of offhe
a double-kink single kinks formation
of a new
double
kink
|

Kinks then are steps of atomic dimension in the dislocation line that are fully contained in the glide
plane of the dislocation

With this general definition, we can consider kinksin all dislocations, not just edge dislocations.

Screw dislocations have a Peierls potential, too, and thus they may contain kinks. The kink, per
definition, isthen avery short a piece of dislocation with edge character.

This has far reaching consequences: A screw dislocation with akink now either has a specific glide
plane - the glide plane of the kink - or the kink is an anchor point for the screw dislocation.

Kinks can do more: Asindicated above, at not too low temperatures when the generation of thermal
double kinks becomes possible, the applied stress may be below the critical shear stress needed to
move the dislocation in toto (i.e. move it across the Peierls potential), but might be large enough to
separate double kinks and thus promote dislocation movement and plastic deformation. We have
one of several effects here that make crystals "softer” at high temperatures.
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5.3.1 Movement of Dislocations

The best way to investigate kinks are inter nal friction experiments.

An oscillating deformation is chosen, e.g. by vibrating a thin specimen driven by an
electromagnetic field. The amplitude and thus the internal stress and strain are easily measured. As
long as the stress is not too large, deformation proceeds by the generation and the movement of
kinks. Thisisafully reversible process and the response to an external stressthusis purely elastic
even though a dislocation moved!

However, in contrast to elasticity just coming from stretching the bonds between the atoms, the
generation and movement of double kinks takes time and is strongly temperature dependent.
Specific time constants are involved and a peculiar frequency dependence of the elastic response
will be observed which contains information about the kinks. More about internal friction in the
link.

Jogsin Diglocations

Theterm "Jogs" is sometimes considered to be the term for all "breaks' or stepsin adislocation line
with atomic dimensions. Kinks then would be a subclass of jogs with the speciality of being in the glide
plane.

However, it is customary to use the term "jogs' for al steps that are not contained in the glide
plane. Looking just at the inserted half-plane of an edge dislocation, jogs and kinks would look like
this:

Inserted half-plane

Kink

But remember: Jogs and kinks can occur in any dislocation, not just edge dislocations - they are just
not as easily drawn!

Jogs in edge dislocations are obviously prime places for the emission or absorption of point defectsasis
shown in the next illustration which looks at the inserted half-plane of an edge dislocation.

Movement of a jog by
addition of interstitials

O

Movement of a jog by
absorption of vacancies
or emission of interstitials

| I
o~ 0O
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5.3.1 Movement of Dislocations

The movement of jogs by emission or absorption of point defects means that the dislocation moves.
This particular process of dislocation movement is called climb of dislocations. It isamovement
that does not take place in the glide plane of the dislocation.

Generally speaking, we define:

Conser vative movement of dislocations = movement in the glide plane = glide (for short) =
movement without assistance of point defects.

Non conservative movement of dislocations = movement not in the glide plane = climb (for
short) = movement needing the assistance of point defects.

Generation of Kinksand Jogs
How do kinks and jogs come into existence? Three mechanisms can be identified.

Thermally activated generation of double kinks as discussed above.

Thermally induced generation of jogs by absorption or emission of point defects. This mechanism
isthermally induced (and not "activated") because it responds to a super- or undersaturation of
point defects. At large under- or supersaturations, the process becomes more likely. Here we have
one of the source/sink processes needed for point defect equilibrium.

I ntersection of dislocations

Thelast process is new and needs some explanation. Lets ook at the movement of an edge dislocation
in the following geometry:

The intersection of the edge dislocation with the screw dislocation produces one jog each per
dislocation. (Consider the cut-and-move procedure and you will see why). It is clear that the same
thing happens for the intersection of arbitrary mixed dislocations - a jog characterized by the
Burgers vector of the dislocation that moved across will be generated.

This gives us ageneral relation and explains to some extent why plastic deformation is an extremely non
linear process:

Movement of dislocations generates jogs.

Jogs influence severely the movement of dislocations - so there is some feedback in the process of
plastic deformation, and feedback of any kind is the hallmark of non-linear processes.

Considering jogs and kinks (together with knots), we start to consider real dislocations - and its getting
complicated.

And don't forget: All those great electron microscope pictures showing all kinds of dislocations,
never show the jogs and kinks! They are simply too small. So even dislocation that look like perfect
straight linesina TEM picture, may be full of jogs and kinks.

Thereis one last property induced by these defects in a defect:
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5.3.1 Movement of Dislocations

Jogs, kinks and their combinations may produce "debris" left behind by a moving dislocation,
because it is often "better” for dislocations to tear away from immobile parts like jogs, leaving
behind atrail of point defects which in turn may agglomerate.

If the jog islarge extending over severa lattice planes, awholetrail of small dislocation loops may
form. The formation of atrail of vacanciesin the wake of ajogged moving screw dislocation is
illustrated in the link

Some more text to come - but try the exercise anyway!

’ Exercise 5.3-1
| Forces on a dislocation
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5.3.2 Generation of dislocations

5.3.2 Generation of Dislocations

Whereas we now learned alittle bit about the complications that may occur when dislocations move, we
first must have some dislocations before plastic deformation can happen. In other words. We need

mechanisms that gener ate dislocationsin the first place!

Of course, dislocations can just be generated at the surface of the crystal; the simple pictures

showing plastic deformation by an (edge) dislocation mechanism give an idea how this may
happen. But more important are mechanisms that generate dislocations in the bulk of acrystal. The

most important mechanism is the Frank-Read mechanism shown below.
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5.3.2 Generation of dislocations
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5.3.2 Generation of dislocations

Theregained
old segment
will
immediately
start to go
through the
whole process
again, and
again, and
again, ... - as
long asthe
force exists. A
whole
sequence of
nested
dislocation
loops will be
produced.

Stable
configuration
after the
process. The
loop isfreeto
move, i.e.
grow much
larger under
the applied
stress. It will
encounter
other
dislocations,
form knots
and become
part of a
network. The
next loop will
follow and so
on - aslong as
thereis
enough shear
stress.

The Frank-Read process, although looking a bit odd, will occur many times under sufficient load. It can
produce any density of dislocationsin short times, because the newly formed dislocations will move,
become anchored at some points, and start to generate Frank-Read |oops, too.

Of course, Frank-Read dislocation sources can also be stopped - e.g. by cutting through the
generating dislocation by another dislocation. We thus will have a certain finite dislocation density
under certain external conditions. It may, however, depend on many parameters, including the
history of the material.

Some kind of Frank-Read mechanism may also operate from irregularities on the surface (external
or internal), an example of such a source is shown in the X-ray topography below.

file:///L|/hyperscripts/def_en/kap_5/backbone/r5_3_2.html (3 of 4) [02.10.2007 16:17:02]



5.3.2 Generation of dislocations

This picture comes from the work of K.B. Kostin (aformer student in Kiel) together with many
othersin St. Petersburg. It isaresult of investigations into "wafer bonding”, whereto Si wafers are
placed on top of each other and "bonded", so that a single piece of Si results - with a grain boundary
in between. The mottled areain the upper left hand corner shows such a bonded structure, whereas
the dark area containing the dislocations as white lines, remained unbonded.

Didlocations were introduced into one of the wafers and one point on the edge of the bonded area
acted as a Frank-Read source. The nested series of dislocation loopsis splendidly visible. There are
also lots of straight dislocations which have moved considerabl e distances from their point of
origin.
How €else can we make dislocations? Suffice it to mention that there are variants of the basic Frank-Read
mechanism, too and some more exotic mechanisms. We will not go into details; the important part is
that it is generally an easy process to generate many dislocations provided you already have afew to
start with.

Last but not least: "Frank" is not the first name of Mr. Read - as ever so often, two independent
persons figured out this mechanism at practically the same time (in 1950) - ook up the link for

details.
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5.3.2 Climb of Dislocations

5.3.3 Climb of Dislocations

Aswe have already seen, dislocation climb couples point defects and dislocationsin avery direct
way. This has the immediate consequence that climb processes will depend on temperature, because:

The types and concentration of equilibrium point defects are temperature dependent.

The supersaturation, which is the driving force for point defect reactionsincluding climb, is
temperature dependent.

The mobility of point defects, i.e. their diffusion coefficient, is temperature dependent.

Unfortunately for most applications, climb makes immobile dislocations mobile again (albeit they
may move very slowly).

Coupled to the slow dislocation movement by climb is aslow plastic deformation with a strong
temperature dependence, which would not occur without point defects - we have an ageing

mechanism. If screwslose their tension, cables start to bow, and metals suddenly fracture after
years of dutiful service, you are probably looking at the results of climb processes.

The major mechanism by which climb processes enable dislocations to move, isthe
circumvention of otherwise insurmountable obstacles, as shown below.

Dislocation trapped Climb by emission
at a large of interstitials
precipitate Co

Free again

Screw dislocations can climb, too, turning into a helix shape. The mechanism isillustrated in the
advanced section; examples of climbed screw dislocations are provided in chapter 6
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5.4.1 Partial Dislocations and Stacking Faults

5.4 Partial Dislocations and Stacking Faults

5.4.1 Stacking Faults and Close Packed Lattices

Stacking Faults and Frank Dislocations

’ Let's consider a close packed lattice, and look at the close packed planes.

In asimple model using perfect spheres we have the following situation:

We take the blue atoms as the base plane for what we are going to built on it, we
will call it the"A - plane".

The next layer will have the center of the atoms right over the depressions of the A -
plane; it could be either the B - or C - configuration.

Herethe pink layer isin the"B" position

If you pick the B - configuration (and whatever you pick at this stage, we can aways
cal it the B - configuration), the third layer can either be directly over the A - plane
and then isalso an A - plane (shown for one atom), or in the C - configuration.

If you chose "A"; you obtain the hexagonal close packed lattice (hcp), if you chose
"C", you get the face centered cubic lattice (fcc)

You can't haveit both ways. If you start in the C position somewhere (in the picture
the green atoms) and on the A position somewhere else (light blue), you will get a
problem as soon as the two layers meet.

For varieties sake, and to be able to distinguish the layers better, the bottom A layer
hereisin dark blue.

’ The stacking sequences of the two close-packed lattices therefore are

fcc: ABCABCABCA...
hcp: ABABABA...

’ Looking at this sequences in cross-section is a bit more involved; it is best donein a <110> projection of the fcc lattice

Planes with the same letter are
on lines perpendicular to the
{111} planes, asindicated by
thin black lines.
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5.4.1 Partial Dislocations and Stacking Faults

The projection of the elementary
cell is shown with red lines.

We now remove parts of a
horizontal {111} plane - e.g. by
agglomeration of vacancies on
that plane - it shall be a C-plane
here.

Now A and C- planes become
neighbors and relax into the
configuration shown.

We produced a stacking fault
because the stacking sequence
ABCABCA..

has been changed to the faulty

sequence ABCABABCA...

The stacking fault is between the
large |etters.

Stacking faults by themselves
are simple two-dimensional
defects. They carry a certain
stacking fault energy y; very
roughly around afew 100
mJ/m2,

The disc of vacancies obviously
is bordered by an edge
dislocation. What is the Burgers
vector of this dislocation? We
shall see farther down.

If we do not condense vacancies on aplane, but fill in a disc of agglomerated interstitials, we obtain the following structure

The stacking sequence
ABCABCA... againisfaulty; it

isnow ABCABACaBca...

:I'he stacking fault is between the
large letters.

Thisisadifferent kind of
stacking fault than the one from
above.

For historical reasons, we call
the stacking fault produced by
vacancy agglomeration
"intrinsic stacking fault" and
the stacking fault produced by
interstitial agglomeration
"extrinsic stacking fault".

The extrinsic stacking fault also
seems to be bordered by an edge
dislocation. Again, what isthe
Burgers vector?

In order to determine the Burgers vector of the apparent dislocations bordering the stacking faults, we must do a Burgers circuit or use the Volterra

definition. For this we must first be clear about the directions in the chosen projection. Thisis shown below.
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5.4.1 Partial Dislocations and Stacking Faults

Directionsin the <110> projection Traces of the (color-coded) planes (right angle to direction)
shown for the elementary cell traced out on the right or above in the <110> projection and the elementary cell.

From a Burgers circuit or from a Voltaterra cut, we obtain the same result (Try it! Itiseasier in this case to hop from atom to atom (instead from lattice
point to lattice point); start at the stacking fault).

The Burgers vector of these dislocationsisb = + a/3 <111> - and thisis not a translation vector of the fcc - lattice! Do not, at this point, forget the
distinction between lattice and crystal!

Didocations with Burgers vectors of thistype are called partial dislocations, or more correctly, Frank partial dislocations, or simply Frank
dislocations.

This brings us to a general definition: Dislocations with Burgers vector that are not translation vectors of the lattice are called partial dislocations. They
must by necessity border atwo-dimensional defect, usually a stacking fault.

This can be verified with the Volterra construction if we add one element: Make acut in a{111} plane and shift by a/3<111> perpendicular to
the plane. The element added is that we now include shift vectors that are not translation vectors of the lattice, but vectors between equivalent
positions of the atoms.

Partia Burgers vectors and stacking faults thus may exist if the packing of atoms defining the crystal has additional symmetries not found in the
lattice. Check this advanced module for an elaboration.

As stated in the definition of the Volterra cut-shift-weld procedure, you now must add or remove material. The total effect isthe creation of a
Frank partial along the cut line and, by necessity, a stacking fault on the cut part of the {111} plane.

We also see now that the primary defects which are generated by the agglomeration of intrinsic point defects in fcc lattices are small "stacking fault
loops'.

Shockley Dislocations
Now we may ask a question: Can we produce stacking faults without the participation of point defects? Indeed, we may - use the Volterra definition to
see how:
Make a cut on a{111} plane, e.g. between the A- and B-plane.

Move the B-plane so it is now in a C-position. No material must be removed or added.

Weld together: Y ou now have the stacking sequence ABCACABCA... instead of ABCABCA.., i.e. you produced the stacking sequence of an
intrinsic stacking fault.
The vector of the shift must be the Burgers vector of the partial dislocation resulting from this operation as the boundary of the intrinsic stacking fault.
This shift vector can be seen by projecting the elementary cell on the close packed {111} plane where we did the cut.

111 - plane

‘ considered

N

The displacement vectors Each one of the red vectors would

for producing stacking faults The directionsin the {111} plane.
with the Volterra construction. If you superimpose the two red circles, anrrE_\/%g Ei%)%\lg Op;aéle I)rsci)trino n
We have al vectors pointing you have the projection shown on the | eft. P P

from one "dent" to a neighboring one. (marked by a green dof).

The relevant displacement vectors are of the type b = a/6<112>. (Check it! It's good exercise for getting used to lattice projections). Dislocations
with this kind of Burgers vector are called Shockley partial dislocations, Shockley dislocations, or simply Shockley partials.

In our <110> projection, Shockley and Frank partials look like this (after a picture from "Hull and Bacon™). The pictures are drawn in aslightly
different style, to make things a bit more complicated (get used to it!)

[112] [110] [111]
A

b=a/6-=112 b =a/3<111
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5.4.1 Partial Dislocations and Stacking Faults

Y ou can't quite see the Shockley dislocation? Well, neither can |. But it istime to get used to the fact that not all dislocations are edge dislocation,
clearly visible in schematic drawings. We will encounter dislocations that are far weirder and almost impossible to "see" in adrawing, or hard to
draw at al. But nevertheless they exist, possess a stress- and strain field described by the formulas from before, and are just the real world inside
crystals.
By now you are wondering if these partial dislocations are an invention of bored professors? Well, they are not! They are more or less the only kind of
dislocations that really exist in fcc crystals (and some others)!
The reason for thisis that perfects dislocations (with a Burgers vector of the type a/2<110>, i.e. alattice translation vector) will dissociate to form
partial dislocations. Thisisonekind of a possible reaction involving partial dislocations, which we are going to study in the next subchapter.
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5.4.2 Dislocation Reactions Involving Partial Dislocations
Splitting of Perfect Dislocationsinto Partial Dislocations
A perfect dislocation may dissociate into two partial dislocations because this lowers the total energy.
The Burgers vector b = a/2[110] may, e.g., decompose into the two Shockley partials a/6[121] and a/6[2,1,—1] as shown below.

Of necessity, a stacking fault between the two partial dislocations must also be generated.

b.=2 <110=

per—

¢Splitting in partials¢

by =% <121>

|

v

v N
‘/>_

_C "

1 R e T ST
Stacking fault 4 6

Y ou can think of this as doing two Volterra cuts in the same plane, each on with the Burgers vector of one of the Shockley partials, but keeping
the cut line apart by the distance d. Each cut by itself makes a stacking fault, but the superposition of both creates a perfect lattice.

L ets balance the energy of this reaction:

2

Energy of the _ 5 _ 5 _Ga
perfect dislocation = G b2 = G- (a/2<110>) T

2

Energy of the _ 5 _ 5 o an o = O
two partial disiocations = 2G - (a/6<112>)2 = 2G -a%/36 - (12+ 12+ 22) = 3

We thus have a clear energy gain —Egit = G a2 by having smaller Burgers vectors. This energy gain does not depend on the distance d between
the dislocations.
But we are not done yet; we have two more energy terms to consider:

1. The energy of interaction +E;je; it will be large at short distances. The dislocations repulse each other and the energy going with this
interaction is proportional to 1/d. Based on this alone, the partial dislocations thus would tend to maximize d.
2. The energy of the stacking fault +Eg¢ stretched out by necessity between the two partial dislocations. This stacking fault energy is always
Ese =Y - area, or, taken per per unit of length as for the dislocations, E'sg =y - d. Based on this alone, the partial dislocations thus would tend to
minimize d.
In total we have some energy gain by just forming partial dislocationsin thefirst place, but energy losses if we keep them too close together, or if we
move them too far apart.
We thus must expect that there is an equilibrium distance deg which gives aminimum energy for the total defect which consists of a split
dislocation and astacking fault. This equilibrium distance dgq will depend mostly on the stacking fault energy y; for small y's we expect alarger
distance between the partials.
In principle, we can calculate dgg by writing down the total energy, i.e. the sum of the energy gain by forming partial dislocations plus the energy
of the interaction plus the stacking fault energy, then find the minimum with respect to d by differentiation. Thisis abasic execise, what you will
getisdg Oy™
Instead of aa pure one-dimensional defect - our perfect dislocation - we have now something complicated, some kind of ribbon stretching through the
crystal. Moreover, this stacking fault ribbon may be constricted at some knots or jogs, and may look like this:

) X
? Constriction, e.g.
dss because of a jog

How would thislook in cross-section? We take a picture after "Hull and Bacon"
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5.4.2 Dislocation Reactions Involving Partial Dislocations

[112]

Glide
plane

11y

[110]

—»  biperfect) b (partial)

Itisclear that adislocation split into Shockley partialsis still able to glide on the same glide plane as the perfect dislocation; the stacking fault
just moves along. It can also change its length without any problems.

For Frank type partials thisis not true. The loop it usually bounds could only move onits glide cylinder. Changing the length would involve the
absorption or emission of point defects.

Reactions between dislocation now tend to become messy. Y ou must consider the reaction between the partials and taking into account the stacking
fault. However, processes now become possible that could not have occurred before. Lets ook at some examples.

A small dislocation loop formed by the agglomeration of vacancies, that in its pure form cannot add much to plastic deformation, may
transmutate into a dislocation loop bounded by a perfect Burgers vector (which in turn may split into Shockley partials) - it is now glissile and
can increase its length ad libitum. How does that happen?

As shown below, the Frank partial bounding the vacancy disc defining the stacking fault has a Burgers vector of the type b = a/3<111>. It then
may split into a perfect dislocation with b = a/2<110> and a Shockley partial with b = a/6<112> (which must liein the loop plane). The
Shockley partial moves across the loop, removing the stacking fault - we have an "unfaulting” process. A loop bounded by a perfect dislocation,
freeto move, isleft. The glide plane of the perfect dislocation is not the plane of the loop; the Burgers vector of the perfect dislocation, after all,
must have a sizeable component perpendicular to the loop plane in order for the sum of the Burgers vectors to be zero.

b= % <110 ~a Stacking fault

b=2 <112>

i *‘*—b:%<111>

The Shockley dislocation, once formed, will move quickly over the loop - pulled by the stacking fault like by a tense rubber sheet. The driving
force for the reaction is the stacking fault energy: Asthe loop increases in size because more and more vacancies are added and the radiusr
grows, the energy of the loop increases with r2 due to the stacking fault. However, the line energy of the dislocation only increases with r no
matter what kind of dislocation is bounding the loop.

Thereistherefore always acritical radiusrj; where a perfect loop becomes energetically favorable.

The perfect loop now feels the Peierls potential, it may try to align the dislocation into the <110> directions, always favorable in fcc lattices the loop
then assumes a hexagonal shape.

—
Peierls-
potential

Now all segments are able to glide. If the resolved shear stress for some segments is large enough, they are going to move, pulling out long
dislocation dipolesin the direction of the movement. The beginning of this process may look look this:

Glide planes

What we have, in summary, is one of the problems of Si materials technology:
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5.4.2 Dislocation Reactions Involving Partial Dislocations

We have an efficient source for dislocation generation by vacancy (or, in Si, interstitial) agglomeration in formerly dislocation free crystals! And
thisis not atheoretical possibility, but reality if you are not very careful in growing your crystals. Many examples are shown in the link.

The Thompson Tetrahedron

Aswe have seen, there are now many possible dislocation reactions. In writing down reaction equations, you must use the specific Burgers vector
(e.g. &/6[1, -2, 1]) and not the genera type (a/6<112> for the example). This can be cumbersome and is prone to produce errors.

Fortunately there is a extremely useful tool for fcc lattices to keep the vectors in line: The Thompson tetrahedron.

The Thompson tetrahedron is simply the tetrahedron formed by the {111} planes with consistently indexed planes and edges.

Am]

—_—
[100]

If welook at the {111}-planes tetrahedron, we see the following connections

« The edges are <110> directions, they may be used to represent the Burgers vectors of the
perfect dislocations and the preferred direction for the line vectors because of the Peierls
potential (red lines).

« Thefacesare {111} planes, they show the positions of potential stacking faults.

« The Burgers vector of the Shockley partials that may bound a stacking fault of the given
{111} plane are the vectors running from the center of the triangular facesto the corners
(blue lines)

« The Frank dislocations that also can bound a stacking fault, run from the center of the
triangular facesto the center of the tetrahedron (not shown).

For a"short-hand" description, it is conventional, to enumerate the edges by A,B,C,D and the centers of their trianglesby a, 3, yand d. The
relevant vectors than become, e.g., AB or Ay.
Itisagood idea (really!) to really build a Thompson tetrahedron - maybe from some stiff cardboard; the link gives the detailed net.
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5.4.3 Some Details for Specific Lattices

5.4.3 Some Dislocation Details for Specific Lattices

Some Specialitiesin fcc L attices
Lomer—Cotrell and stair-rod dislocations

Letslook at the reaction between two perfect dislocations on different glide planes which are split
into Shockley partials, e.g. with the (perfect) Burgers vectors

b, = a/2[-1,1,0] on the (111) plane

b, = a/2[101] on the (-1,1,1) plane

If you have not yet produced your personal Thompson tetrahedra - now is the time you need it!

The two Shockley partials meeting first will always react to form a dislocation with the Burgers
vector (

a
b c = ~[011]
6

uUe your Thompson tetrahedron to verify this!

Thisisanew type of Burgers vector. A dislocation with this Burges vector is called a Lomer-Cotrell
dislocation.
A Lomer-Cotrell dislocation now borders two stacking faults on two different {111} planes, it is
utterly immobile.
The total structure resulting from the reaction - a Lomer-Cotrell dislocation at the tip of two
stacking fault ribbons bordered on the other side by Shockley partials - is called astair-rod
dislocation because it is reminiscent of the "stair-rod" that keeps the carpet ribbonsin place that are
coming down astair. What it looks like is shown in the link.
Itisclear that thisis areaction that must and will occur during plastic deformation. Since it makes
dislocations completely immobile, it acts as a har dening mechanism; it makes plastic deformation
more difficult.
Another speciadlity in fcc-crystals, which would never occur to you by hard thinking alone, are stacking
fault tetrahedra.
Stacking fault tetrahedra are special forms of point defect agglomerates. L ets see what the are and
how they form by again looking at low energy configurations:

Frank partials bonding a vacancy disc have arather high energy (b = a/3[111], b2 = a2/3) compared to a
Shockley partial (b2 = a2/6) or Lomer-Cotrell dislocation (b2 = a2/18), which also can bound stacking
faults. Isthere a possibility to change the dislocation type?
Thereis! Imagine the primary stacking fault to be triangular. Let the Frank partial dissociate into a
Lomer-Cotrell dislocation and a Shockley partial which can move on one of the other {111}-planes
intersecting the edge of the triangular primary stacking faults. (If you do not have a Thompson
tetrahedra by now, it servesyou right!)
L et the Shockley partials move; wherever they meet they form another Lomer-Cotrell dislocation.
If you keep them on other triangular areas, they will finally meet at one point - you have a
tetrahedron formed by stacking faults and bound by Lomer-Cotrell dislocations; the whole process
isshown in the link.

If this seems somewhat outlandish, look at the electron microscopy picturesin the link!

Next, letslook at dightly more complicated fcc-crystals: the diamond structuretypical not only for
diamond, but especialy for Si, Ge, GaAs, GaP, InP, ... Now we have two atoms in the base of the
crystal, which makes things a bit more complicated.
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5.4.3 Some Details for Specific Lattices

First of all, the extra lattice plane defining an edge dislocation may now come in two modifications
called "glide"- and "shuffle" set, because the inserted half-plane may end in two distinct atomic
positions as shown below. The properties of dislocations in semiconductors - not only their mobility
but especially their possible states in the bandgap - must depend on the configuration chosen.

——— 'Shutfle’
- —— 'Glide'

Which configuration is the one chosen by the crystal? It is still not really clear and a matter of
current research.

Some Specialitiesin bcc L attices
The basic geometry in bec lattices is more complicated, becauseit is not a close-packed lattice.

The smallest possible perfect Burgers vector is

a
bhee = 5 <111>

Glide planes are usually the most densely packed planes, but in contrast to the fcc lattice, where the
{111} planes are by far most densely packed, we have several planes with very similar packing

density in bce crystals, namely {111}, {112} and {123}.
This offers many possibilities for glide systems, i.e. the combinations of possible Burgers vectors

and glide planes. Segments of dislocations, if trapped on one plane may simply change the plane
(after re-aligning the line vector in the planes).

Stacking faults (and split dislocations) are not observed because the stacking fault energies are too
large.
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5.4.3 Some Details for Specific Lattices

But the core of the dislocations, especialy for screw dislocations, can now be extended and rather
complicated. Screw dislocationsin <111> directions, e.g., have a core with athreefold symmetry.
This leads to a basic asymmetry between the forward and backward movement of a dislocation:

Forward
movement

Backward

Imagine an oscillating force acting on abcc meta
- Fefor that matter. The screw dislocation will
follow the stress and oscillate between two bowed
out positions. As long as the maximum stresses
are small compared to the critical stress needed to
induce large scale movement, the process should
be completely reversible.

However, due to the asymmetry between forwards
and backwards movement, thereis a certain
probability that once in awhile the screw
dislocation switches glide planes. It then may
move for alarge distance, inducing some
deformation, In due time, things change
irreversibly leading to a sudden failure called

movement "fati qu g

Thisis only one mechanism for fatigue and only
serves to demonstrate the basic concept of
long-time changes in materials under load due to
details in the dislocation structure of materials.

More about dislocations in bcc lattices in the link

Other Lattices

Some specialities about other lattices can be found (in due time) in the links

Dislocations in hcp lattices

Didlocations in unusual |attices
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5.5.1 Dislocations and Plastic Deformation

Dislocations and Plastic Deformation

5.5.1 General Remarks
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6.1.1 Observation of Dislocations and Other Defects

6. Observing Dislocations and Other Defects

6.1 Decoration and Conventional Microscopy

6.1.1 Preferential Etching

Basics of Preferential Etching
The basic idea behind preferential etching isto mark defectsintersecting the surface by asmall pit or groove, so they becomevisiblein a
microscope.

Start with awell polished surface that does not show any structures in alight microscope (including high magnifications and sensitive modes,
e.g. phase or interference contrast

Find an etching solution that dissolves your material much more quickly around defects than in perfect regions (that is the tricky part).

Expose (= etch) your samplein this solution for an appropriate amount of time. What happens will be something like this:

Dislocations | Stecking  Small  Large | point
 fautt . Precipitates  ©  defects

Crystal with Defects

- Original surface

Model crystal with several kinds of defects intersecting the (polished) surface on top,
and surface structure after preferential etching of defects.

After preferential etching you obtain well developed etch pits (actually something looking more like pointed etch cones) at the intersection points of
dislocations (including partial dislocations) and the surface and etch grooves at the intersection line of grain boundaries and stacking faults with the
surface. Precipitates will be shown as shallow pits with varying size, depending on the size of the precipitate and its location in the removed surface
layer. Areas with high densities of very small precipitates may just appear rough. Two-dimensional defects as grain boundaries and stacking faults
may be delineated as grooves.
Thereis acertain problem with grain boundaries, however: They may also be delineated, i.e. rendered visible, with chemicals that do not
preferentially etch defects, but simply dissolve the material with a dissolution velocity that depends on the grain orientation (thisis the rule and
not the exception for most chemicals).
In this case grain boundaries show up as steps and not as grooves. Small steps and grooves, however, look very similar in alight microscope and
may easily be mixed up.
Y ou may think: So what! - in any case | see the grain boundary. Well, ailmost right, but not quite - there are problems:

Grain boundaries separating two grains with similar orientation with respect to the surface would not be reveal ed.

The delineation of grain boundaries obtained under uncertain etching conditions suggests that you delineated all defects - but in fact you did not.
Delineation of grain boundaries thus must not be taken as an indication that the etching procedure works and there are no defects, because you
don't see any!

Before we look at examples and case studies, two important points must be made:

1. Defect etching for many scientistsis aparadigm for "black art" in science. There are good reasons for this view:

Nobody knows how to mix a preferential etching solution for some material from theoretical concepts. Of course you must look for chemicals or
mixtures of chemicals that react with your material, but not too strongly. But after this bit of scientific advice you are on your own in trying to
find a suitable preferential etch for your material.

Well-established preferential etching solutions usually have unknown and poorly understood properties. They sometimes work only on specific
crystallographic orientations; their detection limits for small precipitates are usually unknown; they may also depend on other parameterslike the
doping level in semiconductors; and so on.

2. Defect etching in practice is more art then science.

Beginners, even under close supervision by amaster of the art, will invariably produce etched samples with rich structures that have nothing to do
with defects - they produced so-called etch artifacts. It takes some practice to produce reliable results.

But: Defect etching still is by far the most important and often most sensitive technique for observing and detecting defects!

There are many routine procedures for delineating the defects structure of metals by etching. Here we will focus on defects etching in Silicon; whichis
still the major technique for defect investigationsin Si technology. Some details and peculiarities of defect etching in Si can be found in thelink. In
what follows we look at the power and possible mechanisms of preferential etching in the context of examples from recent research.
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6.1.1 Observation of Dislocations and Other Defects

Defect Etching Applied to Swirl Defectsin Silicon:
The name "Swirl defects' was used for grown-in defectsin large Si crystals obtained by the float-zone technique in the seventies.

Swirl defects are a subspecies of what now is known as "bulk micro defects' (BMD); they are nothing but agglomerates of the point defects
present in thermal equilibrium near the melting point with possible influences of supersaturated impurities still present in ultraclean Si (only
oxygen and on occasion carbon).

Whereas the relatively large swirl defects are no longer present in state-of-the-art Si crystal's, point defect agglomerates and oxygen precipitates
still are - there is no way to eliminate the equilibrium defects! BM Ds are a major concern in the S industry because they cause malfunctions of
integrated circuits. The link leads to some recent papers on point defects and BMDsin Si crystals.

Most of the examples relating to Si are taken from the work of B.O. Kolbesen (formerly at Siemens; now
(2001) at the University of Frankfurt).

The name "swirl" comes from the spiral "swirl-like" pattern observed in many cases by preferential
etching as shown on theright.

Close inspection revealed two types of etch features which must have been caused by different kinds
of defects. Lacking any information about the precise nature of the defects (which etching can not
give), they were termed "A-" and "B-swirl defects". More pictures and information in the link

Understanding the precise nature of swirl defects was deemed to be very important for developing crystal growth techniques that could avoid these
detrimental defects.

But etching alone can not give structural data, and other techniques as, e.g., transmission electron microscopy, could not be applied directly
because the densities of swirl defects was too small (the likelihood of having a defect in atypical TEM sample was practically zero). A
combination of a specia etching technique and TEM, however, could give the desired results.

The power and the "black art" component of defect etching is nicely demonstrated by the following development: A "special etch" which was
simply the old solution, but cooled to about freezing temperatures, did not produce etch pits (and thus remove the defect) for A-swirls, but
hillocks (still containing the defect).

L]
normal (RT) [ Special (cooled)
etching etching

The hillocks identified the precise location of the A-swirl defect. A special preparation technique rendered the areas containing hillocks transparent for
TEM investigations, and the structure of A-swirls defects could be identified. They consisted of dislocation |oop arrangements that were generated by
the agglomeration of interstitials. This gave the first direct evidence that self-interstitials are important in Si.

B-swirl defects could not be identified with this technique - their nature is still not clear.

More about swirl defects and the application of preferential etching can be found in an original paper (in German) in the link.

Process Control by Etching Defects during the Manufacture of Integrated Circuits
The manufacture of integrated cir cuits (1 C) involves many processes prone to introduce defects in the more or less perfect starting crystal.

All high temperature processes induce temperature gradients which lead to stress and thus to a driving force for plastic deformation. Since the
starting material is dislocation free, the decisive processis the generation of the first dislocations which is much easier if small precipitates or
dislocation lops are already present.

Thermal oxidation introduces Si interstitials with a strong tendency to agglomerate into stacking fault loops, so-called oxidation induced

stacking faults (OSF).
All processes tend to induce trace amount of metals which will diffuseinto the Si and eventually precipitate.

lon implantation destroys the lattice to alarge degree up to complete amorphization. Even upon careful annealing some defects may be left over.

Asageneral rule, al defectsin the electronically active part of an I1C (roughly the the first 5 pm - 10 um of the wafer) are deadly for the device. They
have to be avoided and that means that they have to be monitored first. The method of choiceis preferential etching.

Letslook at an example

The pictures show a Si wafer with several defect typesintroduced during very early stages of processing. Details are provided in the link.

file:///L|/hyperscripts/def_en/kap_6/backbone/r6_1_1.html (2 of 4) [02.10.2007 16:17:04]


file:///L|/hyperscripts/def_en/articles/af_si_falster.pdf
file:///L|/hyperscripts/def_en/kap_1/illustr/t1_3_5.html
file:///L|/hyperscripts/def_en/articles/swirl/swirl.html
file:///L|/hyperscripts/elmat_en/kap_4/backbone/r4_1_1.html
file:///L|/hyperscripts/def_en/kap_6/advanced/t6_3_3.html
file:///L|/hyperscripts/def_en/kap_6/advanced/t6_3_3.html
file:///L|/hyperscripts/def_en/kap_6/illustr/i6_1_2.html

6.1.1 Observation of Dislocations and Other Defects

1. Tweezer mark
2. Dislocations (dark areas)
3. Stacking faults (nucleated by a scratch)

4. "Haze" (very small metal precipitates)

A few more example are provided in the links. They might be a bit unconvincing, but be aware that looking into an actual microscope gives you much
more information than what can be captured in afew pictures.

Development of stacking faultsin bipolar transistors

Precipitates and other defects

We are now able to compare weaknesses and strength of preferential etching for defect detection:

Strength Weaknesses
« Simple and cheap o Black art
« Rather sensitive « Detection limit unclear
« Applicableto large areas « What you see must be interpreted
» Needs no special knowledge (ase.g. TEM « Problemswith artifacts
« Mechanism not clear
« No systematic developments of etches

One last example serves to illustrate the "what you see must be interpreted” point. Shown is acomplex defect composed of stacking faults,
dislocations and possibly amicrotwin in full splendor ina TEM micrograph (Ieft), and a schematic outline of what the preferentia etching would look
like in an optical microscope.

o ]

What you would see with preferential etching
TEM micrograph Since the etch pits are smaller than 1 um,
they only would appear as blurred black-white structures

The planar defects are inclined in athin foil; what one seesis the projection. One surface was preferentially etched; at the intersection of the
defect with this surface the etch features can be seen as bright areas (the sample thickness is smaller at etched parts). The stacking fault lines will
be clearly visible in an etch picture, but the various dislocations involved are etched with different strengths.

It will not be possible to conclude from the etch pattern alone on the complexity of the actual defect. This stacking fault assembly correspondsto
some extent to the etch pattern shown in the development of stacking faultsin bipolar patterns given in the link.
Chemical etching on occasion is driven to extremes - simply because thereis no alternative. The link leads to an advanced module, where a particular
tricky case study is presented

Anodic Etching of Defectsand EBIC

Chemical etching, as any chemical dissolution process, is an oxidation-reduction process expressed in chemical terms. Carriers are transferred from
the substrate to the chemicals, new compounds form and go into solution. The paradigmatical model for these processes is anodic dissolution under
applied bias, where the carriers are supplied by a controlled external power source. Maybe away towards the understanding of preferential etching
comes from the electrochemistry of the specimen?
Anodic etching has been studied to some extent in Silicon. It leads to a rather unexpected wealth of effectsthat are at the focus of some current resarch
projects. The experiment issimple:
Bias the (p-type) Si sample positively in some electrolyte that contains hydrofluoric acid (HF). The HF itself is"contacted” by some inert
electrode, e.g. aPt wire, which establishes a closed circuit.
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6.1.1 Observation of Dislocations and Other Defects

The Si-HF- junction behaves to some extent like a Schottky junction; current flow, however, is always accompanied by a chemical reaction. The
current density first increases steeply with the applied bias, then reaches a maximum (called jpg ; PSL stands for "porous Si layer") and decreases
again (that is when the analogy with a Schottky junction fails), goes through a second maximum (called j,) and finally startsto oscillate .

In the "forward" regime of the junction, the reaction is the dissolution of Si (in reverse condition it isH, evolution).

If a polished specimen that was subjected to a current density considerably smaller than the first peak value is inspected after some etching time, its
defect will be revealed in away reminiscent of purely chemical etching. This can be understood (in parts) by considering current flow in terms of
diffusion current and generation currents as introduced in basic pn- (or Schottky)-junction theory. The major ingredients for anodic etching are shown

below.

Inl
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Measured | -V-characteristic and theoretical plot of In | vs.V with diffusion
and generation currents. Around a defect the generation current is larger than in perfect
Si.

Basic experimental set-up, current flow
and chemical reaction

Preferential defect etching thus can be understood in terms of current flow: At small current densities the generation currents are larger than the
diffusion current, the area around electronically active defects (i.e. defects that generate carriers) should be etched more deeply and etch pits should
appear. At larger current densities the differential etch rate should disappear. The experiments support this view to some extent; the link contains some
results

General results of anodic etching

The consideration of the influence of defects on a Schottky junction suggests a different approach to the detection of electronically active defects:
Measure the local leakage current or radiation induced current of ajunction. This can be done by injecting current locally by an electron beam through
athin Schottky barrier while measuring the induced current. Electronically active defects will recombine more carriers than the defect-free regions, the
current will be locally reduced.
This method exists and is called "electron beam induced current” technique (EBIC) if a scanning electron microscopeis used as the basic
instrument. If ascanned light beam is used, we have the "light beam induced current” technique or L BI C; the mainstay of solar cell
development with poly crystalline Si.

The principle of EBIC isshown in thelink.

If one compares anodic etching, chemical etching and EBIC, much can be learned about defects and the detection methods, but many questions
remain open. Some examples are given in the link

Anodic etching is still avirulent research issue within the context of the general electrochemistry of semiconductors.
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6.1.2 Infrared Microscopy

6.1.2 Infrared Microscopy

Materials that are transparent to visible or - more important - infra red light (IR) may be investigated in
transmission. Thisusually requires that the sampleis optically polished on both sides. Especially
semiconductors are transparent in IR light and I R microscopy is often used to investigate defects;

particularly in 111-V compounds. Defects may be rendered visible by:

Polarization microscopy. Elastic strain fields may rotate the polarization angle of polarized light
to some (small) degree. The strain fields around defects can thus be made visible; an example is

shown in the link.

Absor ption contrast. Precipitates, for example, consist of some other material with different
optical properties - it may not be transparent to IR light. In this case they would be directly visible
as dark spots.

If the primary defects are not precipitates but e.g. small dislocation loops resulting from vacancy
agglomeration, they may be turned into a precipitate by atechnique called defect decoration. Thisis
usually done asfollows:

Diffuse afast moving element into the sample (e.g. Li or Cu for Si) at relatively high temperatures
(however, without changing the primary defect configuration).

Cool down sufficiently fast to nucleate the precipitation of the decorating element only at defects,
but not so fast that not enough diffusion jumps are possible and you do not get any precipitation. If
you cool too slowly, homogeneous nucleation may produce precipitates everywhere and the
technique is useless.

The primary defects are now heavily decorated with impurity precipitates and visiblein IR
microscopy (or other techniques). However, the dimensions have been enlarged, the primary defect
structure may have changed, and you must keep in mind that you are now looking at a different
defect from what you wanted to study in the first place!

Nevertheless, | R-microscopy with or without decoration, has made important contributions to the study
of defectsin crystals. Its weaknesses and strengths can be summarized as follows.

resolution (ca. 1
pm).

Strength Weaknesses

« Relatively cheap « Well polished

o Partially surfaces on both
quantitative sides required
(strain fields) Invo_Ived

o Largeand smal specimen
areas can be preparation if
investigated at decoration is
medium used

Often not very
specific asto the

nature of defects

o Only applicable
to "medium”
defect densities

« Not overly
sensitive

o Interpretation
uncertain if
decoration
techniques are
used.

© H. Foll

file:///L|/hyperscripts/def_en/kap_6/backbone/r6_1_2.html [02.10.2007 16:17:04]


file:///L|/hyperscripts/def_en/kap_6/illustr/i6_1_9.html
file:///L|/hyperscripts/def_en/kap_3/illustr/t3_2_4.html

6.2.1 X-Ray Topography

6.2 X-Ray Topography

There are no efficient lenses for X-rays and therefore no X-ray microscopes. Still, there are ways to
image defects with X-rays.
The essentia part for imaging defectsin crystalsis the diffraction of the X-raysin the crystal
lattice. Thisisin contrast to the conventional X-ray imaging technique in medical applications were
the differential absorption of X-raysin differently dense tissue is used.
The basic principle (which is aso valid for imaging with electron beams in the transmission electron
microscope) is shown below:
The specimen is oriented with respect to the incoming wave in such away that the
Bragg-condition for diffraction is only met (or nearly met) for just one set of lattice planes.

All defects with strain fields will locally deform the lattice and thus change the Bragg condition
locally. Theintensity of the diffracted beam will react to thisand vary around defects. Thisis
schematically shown below

Brage condition In the example, the specimen is oriented in such away that
almost fully met imming boam the Bragg condition in the perfect part of the crystal is
-/ amost, but not quite met. There will be no diffraction or,
l l more quantitatively speaking, arather low intensity of the
diffracted beam. The primary beam thus is transmitted
\\\ almost without any |osses.
\\ [
\ \

To the left-hand side of the edge dislocation, the strain
field bends the lattice plane locally into the Bragg position.
l\ l\' In this area the primary beam is strongly diffracted and
Intensity loses intensity.

Theintensity of the diffracted beam is mirror symmetric to
the primary beam.

For the imaging of defects (typically in Si-wafers, with or without processing) the following basic set-up
isused.

Specimen

Aperture

X-ray source mechanically
couplgd scan

T .

T~

An X-ray source with athin "one-dimensional" beam cross-section illuminates a line of the wafer. Only
the primary beam (or, for dark-field imaging, the diffracted beam) is admitted through an aperture on the
film. Wafer, aperture, and film are scanned through the beam.

Some examples of X-ray topography are given in the following links; another one we have already
encountered before.
Total view and resolution limit

Case study in bipolar technique
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6.2.1 X-Ray Topography
The strengths and weaknesses of X-ray topography are quite apparent:

Strength Weaknesses

« Imaging of « Very expensive
Ia_rghe Waf;rs « rather long exposure
with goo times even with
resolution

powerful (typically
(ca 5pm) 50 kW) X-ray tubes

possible ResolUtion/sensiivit
. « Resolution/sensitivity

. Dila”_ed not good enough for
?ggys's single/small defects
Burgers
Vectors)
possible
within
limits

« NO
specimen
preparation
necessary
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6.3.1 Basics of TEM and the Contrast of Dislocations

6.3 Transmission Electron Microscopy

6.3.1 Basics of TEM and the Contrast of Dislocations

Transmission electron microscopy (TEM) is by far the most important technique for studying defects
in great detail. Much of what was stated before about defects would be specul ative theory, or would
never have been concelved without TEM.

Using TEM, we look through a piece of material with electron "waves," usually at high magnification.

In contrast to X-ray imaging, lenses for electron beams exist: Magnetic fields (and, in principle,
electric fields, too) can be made with gradients that act as convex lenses for the electron waves. For
very general reasonsit is not possible to construct electromagnetic concave lenses and that means
that imaging systems are not very good because lens aberrations cannot be corrected asin
conventional optics.

Still, the intensity distribution of the electron waves |eaving the specimen can be magnified by an
electron optical system and resolutions of = 0,1 nm are attainable.

The electrons interact with the material in two ways: inelastic and elastic scattering. Inelastic
scattering (leading eventually to absorption) must be avoided since it contains no local information.
The electron beam then will be only elastically scattered, i.e. diffracted; the | attice and the defects
present modul ate amplitude and phase of the primary beam and the diffracted beams locally.

The energy of the monochromatic electron beam is somewhere between (100 - 400) keV, special
instruments go up to 1,5 MeV (at aprice of ca. 8 M€). Keeping inelastic scattering of the electrons
small has supremacy, this demands specimen thicknesses between 10 nm to ca. 1 um. The

resol ution depends on the thickness; high-resolution TEM (HRTEM ) demands specimens
thicknesses in the nm region.

This has a major consequence: The total volume of the material investigated by TEM since it started in
the fifties, isless than 1 cm3!

Taking and interpreting TEM imagesisahigh art; it takes several years of practice. The major part
of any TEM investigation is the specimen preparation. Obtaining specimens thin enough and
containing the defects to be investigated in the right geometry (e.g. in cross-section) isascience in
itself.

Still, practically all detailed information about extended defects comes from TEM investigations
which do not only show the defects but, using proper theory, provide quantitative information about
e.g. strain fields.

The key isthe electron-optical system. It not only serves to magnify the intensity (and, in HRTEM, the
phase) distribution of the electron waves of the electron waves leaving the specimen, but, at the throw of
aswitch, provides electron diffraction patterns. The picture shows the basic electron-optical design of a
TEM

At least four (usually five) imaging
lenses are needed in addition to two

Specimen y
Fomzs Objective ] N condenser lenses (not shown). For most
Back focal 5~ A lens A Apertre imaging modes an aperture right after

.Diffraction s Istimage the objective lens must be provided.
The beam paths for the diffraction mode
and the imaging mode are shown on the

| eft.

The most important lens is the objective
lens. Itsresolution limit defines the
resolution of the whole microscope.

© lens

Final Final
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6.3.1 Basics of TEM and the Contrast of Dislocations

The aperture after the objective lensis
essential for the conventional imaging
modes. It isusually set to only admit the
primary beam, or one of the diffracted
beams into the optical system.

The image, or better, the contrast of a dislocation depends on several parameters. Most important are:

The diffraction conditions. Isthe Bragg condition fulfilled for many reciprocal lattice vectors g,
for none, or just for two? All cases are easily adjusted by tilting the specimen relative to the
electron beam while watching the diffraction pattern. The preferred condition for regular imaging is
the "two-beam” case with only one "reflex™ excited; i.e. the Bragg condition is only met for one
point in the reciprocal lattice or one diffraction vector g (usually with small Miller indices, e.g.
{111} or {220}.

The excitation error: Isthe Bragg condition met exactly (excitation error = 0; dynamical case) or
only approximately (excitation error < 0 or > 0; kinematical case).

The magnitude of the scalar product between the reciprocal lattice vector g and the Burgers vector
b, g-b. If itiszero or very small, the contrast isweak, i.e. the dislocation isinvisible.

The imaging mode. Isthe primary beam admitted through the aperture and used for imaging
(bright field condition), or adiffracted beam (dark field condition)? In other word, isit the
intensity distribution of the primary beam or of a diffracted beam that constitutes the image? Or are
several beams used whose interference produces a high-resol ution image?

How isthe proper diffraction condition selected experimentally? Fortunately, alittle bit of inelastic

scattering produces so-called Kikuchi lines which provide a precise and easily interpretable guide to the
exact diffraction condition obtained by tilting the specimen. The link shows examples.

The following picture illustrates some imaging conditions for dislocations with maximum and
minimum gb product.

| |1
____—_—————__ —_— 2
/ // / s —— |
—> o
; ——
/ / e —TE
——————
Int. l\' Int. N
N
Bright field W
=101 Dark field ) .
._,/ “Weak beam
L L1 X

We may draw the following conclusions; they are justified by the full theory of TEM contrast.

Dislocations are invisible or exhibit only weak contrast if g - b = 0. This can be used for aBurgers
vector analysis by imaging the same dislocation with different diffraction vectors and observing
the contrast.

Under kinematic bright field conditions (Bragg condition met almost, but not quite), the dislocation
isimaged as adark line on abright background. The width of the line corresponds to the width of
the region next to one side of the dislocation where the Bragg condition is now met; whichis
usually several nm.

Under dark field conditions the dislocation appears bright on a dark background.
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6.3.1 Basics of TEM and the Contrast of Dislocations

Under dark field conditions with large excitation errors the Bragg condition isonly met in a small
region close to the core of the dislocation. The image consists of athin white line on a pitch black
background. Thisis the so-called "weak-beam" condition; it has the highest resolution of
conventional imaging modes. It is hard to use, however, because almost nothing is seen on the
screen (making adjustments difficult) and long exposure times are needed which are only practical
with avery stable instrument.
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6.3.2 Examples and Case Studies for Dislocations

In what follows a few examples for imaging dislocations with TEM are shown. Where possible,
examples have been selected that have been used before (e.g. in the context of dislocation loop
formations) or will be used later (e.g. in the context of defects in boundaries).

The first example demonstrates the contrast of dislocations as a function of the excitation error

The specimen was bent alittle; so the excitation error changes from left to right. On the left hand
side, the excitation error isrelatively large; on the right hand side it is small. The contrast on the left

isweak, but the resolution is good; on the right hand side the dislocation appears a as strong, but
blurred black line.

The second example demonstrates the contrast disappearance for g - b =0.

Shown is a network of pure screw dislocationsin Si which we will encounter again in the context of
grain boundaries.

Only one set of dislocations shows up in the dark field conditions employed for the g = {220} type
of diffraction vector which is parallel to one Burgers vector and perpendicular to the other one.
With a g = {400} diffraction vector both sets of dislocation are imaged, but thereisaloss of clarity.

Next we will see how a dislocation loop can be analyzed.

Shown are dislocation loops of the "A-swirl defects’ imaged with two different diffraction vectors

(drawn in as arrows) and a +g/—g pair. In the first image, the contrast of the lower dislocation loop
has disappeared (the fuzzy line is due to the precipitates along the dislocation line). The two

pictures on the right show the lower loop, the image is wide or narrow, depending on the sign of the
diffraction vector g.
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6.3.2 Examples and Case Studies for Dislocations

Thisisan important effect because it allows to analyze the nature of a dislocation loop as
schematically illustrated below. The image of the loop lies inside or outside the geometric

projection; upon reversing the sign of g or b (and this means switching from vacancy to interstitial
type), the image switches between the two extremes.

Intensitdt

For agiven geometry it is possible to predict if the contrast is"inside" or "outside"; the nature of a
loop may thus be determined. But beware! There are many possibilities of committing asign error!

Printing the negative with emulsion side up or down, e.g., will exchange the signs and turn a
vacancy loop into an interstitial loop or vice versa.

The next example compares regular dark field and weak-beam conditions. The object isavery dense

dislocation network with a complicated structure which we will encounter again in the context of grain
boundaries.
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Dark field Weak beam

The weak-beam image on the left shows alot more detail, but the signal to noiseratio is rather bad.
Thisis about the limit of the resolution obtainable under weak beam conditions.

In the link, a comparison between weak-beam conditions and bright field can be found.

The last picture shows conventional bright field imaging.

Thetip of a probe produced some mechanical damage in the emitter area of atransistor in an
integrated circuit (the bright square areain the center of the tangle). A microcrack was generated

(the elongated black shape); upon heating in the next processing cycle the dislocation tangle was
formed to relieve the stress.
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6.3.2 Examples and Case Studies for Dislocations

By tilting the specimen while keeping the imaging conditions constant (this involves arotation
around the diffraction vector), a second picture can be obtained under a somewhat different imaging
direction. The two pictures can be viewed in a stereo viewer and will produce the full
three-dimensional glory of the structure.

More examples can be found in the links

Weak-beam image of a dislocation network involving partial dislocations under different diffraction
conditions

Unknown ribbon defect in Si, showing difficultiesin interpretation

Radiation damage in Co showing possibilities of interpretation

FeSi precipitatesin Si

Prismatic punching of dislocation loops from precipitates

Helix dislocations produced by climb of screw dislocations

Dislocations in TiAl being pinned by debris

PtSi on Si showing the power of diffractions patterns (for another example use the link)
Comparison weak beam - bright field

© H. Foll
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6.3.3 Stacking Faults and Other Defects

6.3.3 Stacking Faults and Other Two Dimensional Defects

Stacking faults

Two-dimensional defects like stacking faults, but, to some extent also grain- and phase boundaries, give
rise to some specia contrast features.
Stacking faults are best seen and identified under dynamical two-beam condition; i.e. the Bragg
condition is exactly met for one point in the reciprocal lattice.
This automatically implies that the diffracted beam, if seen as the primary beam, also meets the
Bragg condition; it is diffracted back into the primary beam wave field.
This leads to an oscillation of the intensity between the primary and the diffracted beam as a
function of depth in the sample; the "wave length” of this periodic intensity variationsis called the
extinction length €.
For a wedge-shaped specimen, the intensity of the primary or diffracted wave thus changes with the
local thickness; it goes through maximaand minima.
The illustration shows the resulting image: a system of black and white fringes, called thickness
fringes or thickness contour s is seen on the screen.On top a schematicdrawing, on the bottom the
real thing. In this caseit is an etch pit in a Ge sample which is the usual inverted pyramid with
{111} planes.

by v b by ey

o e €

Image

A stacking fault can be seen as the boundary between two wedge shaped crystals which are in direct
contact, but with a displacement R aong the wedge.

As aresult, the two fringe systems resulting from the two wedges do not fit together anymore. A
new fringe system develops delineating the stacking fault; we see the typical stacking fault fringes
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Again, getting al the signsright, the nature of the stacking fault can be determined. If intrinsic
stacking faults under some imaging conditions would start with awhite fringe, extrinsic stacking
faults would start with a black one. Reversing the sign of the diffraction vector g or the
displacement vector R changes white to black and vice versa

If more kinematical conditions are chosen, the amplitude of the intensity oscillation decreases; the
stacking fault contrast assumes an average intensity that is usually different from the normal background
intensity - stacking faults appear in grey.

A few examples: The picture below shows three defects that behave as predicted and could be stacking
faults. Indeed, the small defect in the top half and the very large defect are stacking faults. The smaller
defect in the bottom part, however isamicro twin. Thisis not evident from one picture, but can be
concluded from contrast analysis.

The next picture shows a complicated arrangement of several stacking faults:
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6.3.3 Stacking Faults and Other Defects

A whole system of overlapping oxidation
induced stacking faultsin Si. The
biggest loop was truncated by the
specimen preparation; the fringe system
where the stacking fault intersects with
one surfaceis clearly visible.

The other surface was preferentially
etched; the etch pits down the (Frank)
dislocation lines are clearly visible.

The overlap of severa stacking faults
leads to changing background contrasts -
from black to no contrast (whenever
multiples of three stacking faults overlap)
to amost white.

Similar if less complicated contrast effects were already encountered in illustrations given before in
the context of point defect agglomeration.
More examples of atypical oxidation induced stacking faultsin Si (OSF) are given in the link

But there are limitsto TEM analysis. Sometimes defects are observed which resist analysis. One
example is shown in the link; another one we will encounter in the next subchapter.

Other Defects

The strain-induced contrast of dislocations due to local intensity variations in the primary and diffracted
beams and the fringe contrast of stacking faults due to local phase shifts of the electron waves, if taken
together, are sufficient to explain (quantitatively) the contrast of any defect.
It may get involved, and not everything seen in TEM micrographs will be easily explained, but in
general, contrast analysisis possible and the detailed structure of the defect seen can be revealed
within the limits of the resolution (you cannot, e.g., find akink in adislocation (size ca. 0,3 nm)
with atypical kinematical bright field resolution of 5 nm).

In the links a gallery of micrographs is provided with awide spectrum of defects. Bear in mind that most
examples are from single crystalline and relatively defect free Silicon. The images of regular
poly-crystalline materials would be totally dominated by their grain boundaries (see the examples at the
end of the list).

Small dislocation loops in Cobalt produced by ion-implantation.

Precipitatesin Silicon with dislocation structures.

Needle shaped FeSi, precipitates in Si; the bane of early 1C technology.

Helical dislocations resulting from the climb of screw dislocations.

Bowed-out dislocationsin a TiAl alloy; kept in place by point defects and small precipitates.
A thin film of PtSi on Si asan example of the "real" world of fine-grained materials.

Overview of TiAl as an example of a specimen with a high defect density.
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6.3.4 High Resolution TEM

6.3.4 High Resolution TEM

High-Resolution TEM (HRTEM) isthe ultimate tool in imaging defects. In favorable cases it shows
directly atwo-dimensional projection of the crystal with defects and all.
Of course, this only makes sense if the two-dimensional projection is down some low-index
direction, so atoms are exactly on top of each other.

The basic principle of HRTEM is easy to grasp:

Consider avery thin dlice of crystal that has been tilted so that alow-index direction is exactly
perpendicular to the electron beam. All lattice planes about parallel to the electron beam will be
close enough to the Bragg position and will diffract the primary beam.
The diffraction pattern isthe Fourier transform of the periodic potential for the electronsin two
dimensions. In the objective lens all diffracted beams and the primary beam are brought together
again; their interference provides a back-transformation and leads to an enlarged picture of the
periodic potential.
This picture is magnified by the following electron-optical system and finally seen on the screen at
magnifications of typically 106.
The practice of HRTEM, however, is more difficult them the simple theory. A first illustration servesto
make afew points:
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The image shows one of the first HRTEM images taken around 1979; it is the <110> projection of
the Si-lattice; a schematic drawing is provided for comparison. It also contains afew special grain
boundaries, called twin boundaries.

We notice afew obvious features:
Instead of two atoms we only see adark "blob."

Or does the dark blob signal the open channelsin the lattice projection? Thereis actually no way of
telling from just one picture.
The twin boundaries |ook fine in comparison to the drawing at afirst glance. Looking more closely,
one redlizes that there are afew unclear points: The yellow arrow pointsto "fuzzy" lattice planesto
theright (or left) of the boundary. Following afringe across the boundary seemsto result in an
offset - what does it mean? But what should we expect defects (in this case the twin boundaries) to
look like? After al, they destroy the periodicity of the lattice and it is not obvious what Fourier
transforms of defects will produce in general cases.
The last point is easy to solve: Just do asimulation of adefect (i.e. calculate the image for an assumed
dlice of acrystal with all atoms at the proper positions), but mind the points mentioned below! These are
the limitationsto HRTEM stemming from the non-ideality of the instrument and the specimen:
The specimen is not arbitrarily thin! If the thicknessisin the order of the extinction length, some
reflexes may have very small intensities because they were diffracted back into the primary beam.
The objective lens then will not be able to reconstruct the spatial frequencies contained in these
reflections; the image looks like a different lattice.
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This can be nicely seeninaHRTEM image of Si where the thickness of the sample increases
continuously:

The inset shows the lattice in <110> projection; an elementary cell is given by the large rectangles
formed by solid blue lines.

On the right hand side of the picture, all reflections are excited; the very strong {111} reflections
dominate the image and the {111} |attice planes (indicated by white lines) are most prominent. On
the left hand side the thickness happens to be in aregion where the {111} reflections are weak; the
{400} type reflections dominate ({100} etc. are "forbidden” in the diamond lattice). The lattice
appears rectangular.

In principle, this can be calculated, too, without much problems. What is much more problematic is the
"contrast transfer function" of the objective lens.

If we consider the objective lens to be some kind of amplifier that is supposed to amplifies (spatial)
frequencies in the input with constant amplification and without phase distortion, the objective lens
isavery bad amplifier. It has afrequency response that is highly nonlinear, the amplification drops
off sharply for high (spatial) frequencies (meaning short distances). In other word, the resolution is
[imited (to roughly 0,1 nm in good TEMSs); you cannot see smaller details.

But worse yet, around the resolution limit, the objective lens induces strong phase shiftsas a
function of several parameters (the most important one being the focus setting); this influences the
interference pattern which will define the image.

Both effects together can be expressed numerically in the contrast transfer function of the lens. If you
know that function (for every picture you take) you may than calculate what the image would look like
for a"perfect" lens with a certain resolution limit; or somewhat easier, you calculate what a crystal with
the defects you assume to be present would look like in your particular microscope with the contrast
transfer function that it has.

Neither approach is very easy; the amount of computing needed can be rather large. Worse, you must
determine parts of the contrast transfer function experimentally; and that involves taking several images
at different focus settings. Still, HRTEM images provide the ultimate tool for defect studies. They are
perfectly safe to use without calculations if you obey two simple rules:

Only look at pictures where the perfect part of the crystal looks asit should. After all, you usually
know what kind of material you are investigating. So if the image of a diamond structure looks like
the left part of the illustration above; throw it away (or at least use with care). It it looks like a
diamond strucure you can't go totally wrong in interpreting the picture.

Only draw qualitative conclusions (e.g. thereis adislocation in this GaAs specimen!); never draw
guantitative conclusion (e.g. it ends at a Ga atom!) without cal culating the image.

Some more detailsto HRTEM imaging can be found in the (German) article in the link

Three examples may serveto illustrate HRTEM here; more will be found in the upcoming chapters.
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6.3.4 High Resolution TEM

The first picture shows asmall angle grain boundary in Si. Thiswas the first picture of thiskind; it
only can be interpreted qualitatively; the contrast transfer function was not known. What we see
beyond doubt are several lined-up dislocations which constitute a boundary - the top half of the
lattice is tilted with respect to the bottom half.

The next picture (from W. Bergholz) shows an SIO,, precipitatein Si. Again, aqualitative

interpretation is neither possible nor necessary. It is clear that the precipitate, albeit very small, is
not spherical

Courtesy of W. Bergholz

The last example shows quantitative HRTEM (from W. Jager) Careful imaging under various
conditions, extraction of the contrast transfer function and prodigious computing allowed not only
to image a sequence of Si - Ge multilayers produced by molecular beam epitaxy (M BE), but to
identify the positions of the Si and Ge atoms. The first picture shows an overview. The brighter
regionsindicate the Ge layers, but it isnot clear exactly how the lattice changes from Si to Ge.
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Courtesy of W. Jager

6.3.4 High Resolution TEM
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(Siemens EImiskop 102). The last pictures were taken with a TEM optimized for high resolution

around 1995.
Next a comparison between an enlarged part of the Ge/Si stack is shown together with a quantitative

pictures shown above were taken with a the best genera -purpose TEM available around 1980

Thisimage also demonstrates the progress made in building electron microscopes. The "old"
evaluation of this and other pictures obtained at different focus settings from W. Jaeger and his group.

The color codes defined Ge concentrations and a very clear representation of the multilayer sequenceis

obtained.

Courtesy of W. Jager
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7.1.1 Grain Boundaries

7. Grain Boundaries

7.1 Coincidence Lattices

7.1.1 Twin Boundaries

General Remarks

So-called "twin boundaries' are the most frequently encountered grain boundariesin Silicon, but also
in many other fcc crystals. This must be correlated to an especially low value of the interface energy or
grain boundary energy always associated with a grain boundary. This becomes immediately
understandable if we construct a (coherent) twin boundary. The qualifier "coherent” is needed at this
point, we will learn about its meaning below.

Letslook at the familiar <110> projection of the diamond lattice:

T
o b0 b0 0040 00

Now we introduce a stacking fault, e.g. by adding the next layer in mirror-symmetry (structural
chemistswould call thisa"cis" instead of a"trans" relation):

bbb bbb
Co-Co-Co-to-d
be-Ce-Ve-Oe-Ce—Ce

If we were to continue in the old stacking sequence, we would have produced a stacking fault.
However, if we continue with mirror-symmetric layers, we obtain the following structure without
changing any bond lengths or bond angles:
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7.1.1 Grain Boundaries

We generated a (coherent) twin boundary! Thisisobviously a special grain boundary with ahigh
degree of symmetry.

Now let'stry to describe what we did in general geometric terms. To describe the twin boundary from
above or just any boundary geometrically, we look at the general caseillustrated below:

We have two arbitrarily oriented grains joined
together at the boundary plane. We thus need to
define the "arbitrary" orientation and separately
the boundary plane.

Choosing grain | as reference, we now can always
"produce” aarbitrary orientation of the second grain
by "cutting" apart of grain | off - along the
boundary plane - and then rotating it by arbitrary
anglesa, 3 and y around the x-, y- and z- axis
(always defined in the reference crystal, here grain
1.

Orientation of IT
relative to I

Boundary plane
relative to I

Grain I
Of course, the grain | thus produced would not I )
fit together anymore with grain I. So we simply

remove or add grain |1 material, until afitis

produced.

Alternatively, we could simply rotate the
second crystal around one angle a if we pick a
suitable polar vector for that.

Specifying this polar (unit) vector will need two
numbers or its direction - e.g. two angles
relative to the boundary plane or any other
reference plane, and one number for its length
specifying the angle of rotation.

In either way: three numbers then for the
orientation part.

The boundary then is defined by 5 parameters: The three rotation angles needed to "produce” grain 11,
and two parameters to define the boundary plane by its Miller indices {hkl} in the coordinate system of
thereferencegrain|.

Why do we need only two parameters to define the boundary plane? After all, we usually need
three Miller indices {hkl} to indicate aplanein a crystal?
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7.1.1 Grain Boundaries

Good question! We need only two numbersin this case because here a unit vector with the right
orientation given by {hkl} is sufficient - the length, likewise encoded in {hkl}, does not matter.
Since you need only two angles between a unit vector and the coordinate axis' to describe it
unambiguously, two numbers are enough, even so they cannot be given straightforward in {hkl}
terms.

The third angle is then always given by the Euler relation

sina + sin?B + sinzy = 1

Again, Miller indices do not only give the direction of avector perpendicular to a crystallographic
plane, but also a specified length which contains the distance between the indexed crystallographic
planes - and that's why they need three numbersin contrast to a unit vector.

Thus, constructing a simple (coherent) twin boundary, looking at it and generalizing somewhat, we
learned a simple truth:

A (simple) grain boundary needs (at least)
5 parameters
for itsgeometric description

That was some basic geometry for a simple grain boundary! For real grain boundaries we must add the
complications that may prevail, e.g.:

The grain boundary is not flat (not on one plane), but arbitrarily bent.

The grain boundary contains (atomic) steps and other local "grain boundary defects'.

The grain boundary contains foreign atoms or even precipitates.

The grain boundary is not crystalline but consists of athin amorphous layer between the grains.

Since all those (and more) complications are actually observed, we must (albeit reluctantly) conclude:

Grain boundariesarerather complicated defects!

Detailed Consider ation of the Coherent Twin Boundary

We can learn more about grain boundaries by analyzing our (coherent) twin somewhat more. While we
generated this defect by adding {111} layersin amirror-symmetric way, there are other ways of doing it,
too:

We first consider the twin boundary as a pure twist boundary. The recipe for creating a twist boundary
following the general recipe from aboveis as follows:

Cut the crystal along a{111} plane (using Volterras knife, of course).

Rotate the upper part by 180° or 60° around an axis perpendicular to the cut plane (= "twist")

Weld the two crystals together. There will be no problem, everything fits and all bonds find
partners.
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7.1.1 Grain Boundaries

This procedure is shown below. We are forced to conclude that we obtain exactly the same twin
boundary that we produced above!

-0 O-o@
LI, e LTS
$o-00B 005 05 0000000000 [ § b 6. 8. o0ob

TLLL, UL Ty

| | | | G0
bo-bo-Le-Oe-00-de 01 dedo-bo-Oe-d6-00

Cut Twist Weld

Now letslook at the other extreme: We construct our twin boundary as a pure tilt boundary. The recipe
for creating atilt boundary following the general recipe from above is asfollows:

________________________________ P-gB -0

TS S Yy

Remove Y6-C@ : Co—Cig—Co
do-bo-o-do-bo-bp material de-do-O0-Co-de  do bobo-do-b-de
Cut Tilt and Weld

add/remove material

Cut the crystal along a{111} plane (using Volterras knife, of course)

Rotate the upper part by 70.53° around an axis perpendicular to the drawing plane (= "tilt" the
grain); i.e. use a<110> direction for rotating.

Now, however, we must fill in or remove material as necessary.
Weld together.
This procedure is shown above; again we obtain exactly the same twin boundary we had before!

Thisisnot overly surprising, after all the symmetries of the crystal should be found in the
construction of grain boundaries, too.

WEell thisis conceptually easy to grasp, it generates amagjor problem in the mathematical analysis of
the grain boundary structure. What you want to do then isto generate a grain boundary by some
coordinate transformation of one grain, and than analyze its properties with respect to the necessary
transformation matrix. If there are several (usualy infinitely many) possible matrices, all producing
the same final result, you have a problem in picking the "right" one. We will run into that problem
in chapter 7.3.

Grain Boundary Orientation and Energy
Now letslook at the energy of the twin boundary and see if we can generalize the findings. We are
interested in answering the following questions:

Is the grain boundary energy (= the energy needed to generate 1 cm? of grain boundary) afunction
of the 5 parameters needed to describe the boundary? The answer, of course, will be yes, so now we
ask:

file:///L|/hyperscripts/def_en/kap_7/backbone/r7_1_1.html (4 of 6) [02.10.2007 16:17:09]



7.1.1 Grain Boundaries

For a given orientation, could asmall change in the three angles describing that orientation induce
large changes in the energy? Asking a bit more pointedly: Are there orientations leading to
boundaries with especially small or large energies? Are there favorable and unfavorable
orientations?
For a given orientation, are there possibilities to minimize the energy, e.g. by changing the
boundary plane? Are there favorable and unfavorable planes?
We will be able to answer these question to some extent by using our twin boundary. First lets ook at
the energy of the (coherent) twin boundary as shown above.
We would expect arather small energy per unit area, because we did not have to change bond
lengths or angles. We should expect that the energy of a (coherent) twin boundary should be
comparable to that of a stacking fault.

It is hard to imagine a boundary with lower energy and this explains why one always finds alot of
twin boundaries in cubic (and hexagonally) close-packed crystals

Now lets generate a twin boundary with the "twist" or "tilt" recipe, but with twist or tilt angles slightly
off the proper values. Lets assume atwist angle of e.g. 58° instead of 60°. We then make a boundary
with asimilar, but distinctly different orientation.
Try it! Can't be done. Nothing will fit any more; alot of bonds must be stretched or shortened and
bent to make them fit. No doubt, the energy will increase dramatically. In other words:

The energy of a grain boundary may dependent very much on the precise orientation relationship

Next lets imagine the generation of atwin boundary where the twist or tilt angle is exactly right, but
where the cut-planeis slightly off {111}. The result looks like the schematic drawing below:

Again, we have a hard time with the welding procedure. Some atoms will find partners with a dlight
adjustment of bonds, but other are in awkward positions, e.g. the atoms colored blue in the above
illustration. The energy will be much higher than for a {111} plane - for sure. In other words:

The energy of a grain boundary may dependent very much on the Miller Indices of its plane

We now can understand the meaning of the qualifier "coherent” in connection with atwin
boundary: Only twin boundaries on {111} planes are simple boundaries; they are called coherent to
distinguish them from the many possible incoherent twin boundaries with planes other than {111}.

Optimization of Grain Boundary Energies

From the last observation we can easily deduce afirst recipe for optimizing, i.e. lowering, the energy of
agiven grain boundary:
Decompose the grain boundary plane into planes with low energies. If that cannot be done, form at
least large areas on low-energy planes and small areas of connecting high-energy planes. In other
words, approximate the plane by a zig-zag configuration of planes.
This processis called facet forming or facetting, the boundary plane forms facets. Thisis
illustrated below.
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7.1.1 Grain Boundaries

Grain boundary on low-energy plane (i.e. a
{111} plane for atwin boundary). The {111}
111} planes are indicated by the dashed lines

Grain boundary on high -energy plane

Energy optimization by facetting on { 111}.
The total area increases somewhat, but the
energy decreases.

Thisis an important insight with far-reaching consequences: We need no longer worry very much about
the grain boundary plane! It is always possible to optimize the energy by facetting.

Facetting involves, of course, the movement of atoms. However, only small movements or
movements over small distances are needed, so facetting is not too difficult if the temperatures are
not too low. So the crystal has an option - it can change the boundary plane by moving afew atoms
around.

Experience, too, seem to show that boundary planes are not very important: Grain boundaries, as
revealed by etching or other methods, are usually rather curved and do not seem to "favor"
particular planes - with the exception of coherent twins. This, however, issimply an illusion
because the facetting takes place on such asmall scale that it isnot visible at optical resolution.

We now must deal with the relation between the relative orientation and the grain boundary energy.
Two guestions come to mind:
Arethere any other low-energy orientations besides the rotations around <111> or <110> that
produces the low-energy twin boundary?
Is there away to minimize the energy of agrain boundary that is close to, but not exactly in alow
energy orientation (some analogon to the facetting of the planes)?

Thisis not an easy question, because the crystal does not have an option of changing the
orientation relationsship. In principle it would be possible, but it would imply moving alot of
atoms - al the atomsinside agrain - and that is rather unlikely to occur.

Answering these questions will lead us to an important theory for the structure of grain boundaries (and
phase boundaries) which will be the subject of the next sub-chapter.
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7.1.2 The Coincidence Site Lattice

If welook at the infinity of possible orientations of two grains relative to each other, we will find some
special orientations. In two dimensions thisis easy to seeif we rotate two lattices on top of each other.

Y ou can watch what will happen for a hexagonal lattice lattice by activating the link.

A so-called M oir ée pattern develops, and for certain angles some lattice points of lattice 1 coincide
exactly with some lattice points of lattice 2. A kind of superstructure, a coincidence site lattice (CSL),
develops. A question comes to mind: Do these specia coincidence orientations and the related CSL
have any significance for grain boundaries?

Letslook at our paragon of grain boundaries, the twin boundary:

Shown are the two grains of the preceding twin
boundary, but superimposed. Coinciding atoms
(in the projection) are marked red. However, this
might be coincidental (excuse the pun), because
the atomsin thisdrawing are not all in the
drawing plane. Note that it is not relevant if the
boundary itself is coherent or not - only the
orientation of the grains counts.

And once more, note that the lattice is not the
crystall We are looking for coinciding lattice
points - not for coinciding atom positions (but
this may be almost the same thing with simple
crystals).

o in this picture the same situation is shown for

COGHO OO OOOOODO the fcc | attice belonging to the grain boundary.

Srerereslesererese Again, coinciding lattice points are marked red

o.@.c; oo :D. ® .cc:p. and a (two-dimensional) elementary cell of the
000 eI ROED @ CSL isaso shownin red. The two

Ol DD DD .OD.CD.O (three-dimensional) elementary cells of the fcc

|attices are also indicated.

It is definite from this picture that the the twin
boundary belongs to the class of boundaries with
a coincidence relation between the two lattices
involved.

From the animation in the link above it was clear that many coincidence relations exist for two identical

two-dimensional lattices. In order to be able to extend the CSL consideration to three dimensions and to
generaizeit, we have to classify the various possibilities. We do that by the following definition:

Definition:

The relation between the number of lattice pointsin the unit cell of
aCSL and the number of lattice pointsin aunit cell of the
generating lattice is called X (Sigma); it is the unit cell volume of
the CSL in units of the unit cell volume of the elementary cells of
the crystals.

A given X specifies the relation between the two grains unambiguously - although thisis not easy to
seefor, let's say, two orthorhombic or even triclinic lattices.
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7.1.2 The Coincidence Site Lattice

If welook at the twin boundary situation above, we see that Z;,,i, = 3 (you must relate the
two-dimensional lattices her; one is pointed above out in black!). For the three-dimensional case we still
obtain > = 3 for the twin boundary, so we will call twin boundaries from now on: >3 boundaries.

A 21 boundary thus would denote a perfect (or nearly perfect) crystal; i.e. no boundary at all.
However. boundariesrelatively closeto the 21 orientation are all boundaries with only small
misorientations called "small-angle grain boundaries' - and they will be subsumed under the term
21 boundaries for reason explained shortly.

Since the numerical value of X is always odd, the twin boundary is the grain boundary with the

most special coincidence orientation thereis, i.e. with the largest number of coinciding lattice
points.

Next in line would be the 25 relation defining the =5 boundary. It is (for the two-dimensional case) most
easily seen by rotating two square lattices on top of each other.

[o10] @ @ @ @
e® o® o® L, ,®
e e * e® o
pig e e s @ T @
T e® 2 2% @
@ @ @ > =

This also looks like a pretty "fitting" kind of boundary, i.e. alow energy configuration.

A suspicion arises. Could it be that grain boundaries between grainsin a CSL orientation, especidly if
the Z values are low, have particularly small grain boundary energies?

The answer is. Yes, but... . And the "but" includes several problems:

Most important: How do we get an answer? Calculating grain boundary energiesis still very hard to
do from first principles (Remember, that we can't calculate melting points either, even though its all
in the bonds). First principles means that you get the exact positions of the atoms (i.e. the atomic
structure of the boundary and the energy). Even if you guess at the positions (which looks pretty
easy for a coherent twin boundary, but your guess would still be wrong in many cases because of
so-called "rigid body trandations"), it is hard to calculate reliable energies.

So we are left with experiments. This involves other problems:

How do you measure grain boundary energies?
How do you get the orientation relationship?

How do you account for the part of the energy that comes from the habit plane of the boundary -
after al, a coherent twin (habit plane = {111}) has a much smaller energy than an incoherent one?

Getting experimental results appears to be rather difficult or at least rather time consuming - and so it is!

Nevertheless, results have been obtained and, yes, low Z boundaries tend to have lower energies
than average.
However, the energy does not correlate in an easy way with Z; it does not e.g. increase
monotonously with increasing 2. There might be some Z values with especially low energy values,
whereas others are not very special if compared to a random orientation.

The result of (ssmple) calculations for special cubic geometries are shown in the picture:
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7.1.2 The Coincidence Site Lattice

600

I Pt
I=I3 E=07 =5 E=5Z:ITI=I3
P
P \‘ .—'\/.
" e
:! '/ . \;'.\

600 |-

~
.

-/

T
IR

£+9 =l T=3 3=3 3=l 3:9

.-,
\./ L]

-8

UalN
.

[ R

|

" 1=

E

o

f i 4

LT -

,.,'400—/ 00 ]

e . _

& - » \

@ L)

= 2001 .

5 200

o

-

3

@
e—L L 11140 d el lel I I 1 | e
o 20 40 60 80 0 20 40 &0 BO 100 120 KO 160 180

Misarienlolion, & deg )

Shown is the calculated (0°K) energy for symmetric tilt boundariesin Al produced by rotating
around a<100> axis (left) or a<110> axis (right). We see that the energies are lower, indeed, in
low Z orientations, but that it is hard to assign precise numbers or trends. Identical = values with
different energies correspond to identical grain orientation relationships, but different habit planes
of the grain boundary.

The next figure shows grain boundary energies for twist boundaries in Cu that were actually measured
by Miuraet a. in 1990 (with an elegant and ingenious, but still quite tedious method).

- 127 163 226 7281 39 436
t LAATI5A LI3A Di7A I5 1294
8
§0.£
@
e
li0.3 /l\iﬂ"{\/l\!
g
he)
=
3
802 ; H
[N
2
ﬁo-' (001) twist
0 N N 1
] 15 30 45
Misarientation Angle (deg.)

Clearly, some Z boundaries have low energies, but not necessarily all.

Nevertheless, in practice, you tend to find low Z boundaries, because (probably) all low energy grain
boundaries are boundaries with a defined Z value. And these boundaries may have special propertiesin
different contexts, too.
The link shows the critical current density (at which the superconducting state will be destroyed) in
the high-temperature superconductor Y Ba,Cu3;07 with intentionally introduced grain boundaries of
various orientations and HRTEM image of one (facetted) boundary. It is clearly seen that the

critical current density has a pronounced maxima which correspondsto alow Z orientation in this
(Perovskite type) lattice.

However, despite this or other direct evidence for the special role of low 2 boundaries, the most clear
indication that low % boundaries are preferred comes from innumerable observations of a different
nature altogether - the observation that grain boundaries very often contain secondary defects with a
specific role: They correct for small deviations from a special low X orientation.

In other words: Low X orientations must be preferred, because otherwise the crystal would not
"spend” some energy to create defects to compensate for deviations.
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7.1.2 The Coincidence Site Lattice

If we accept that rule, we also have an immediate rule for preferred habit planes of the boundary:

Obvioudly, the best match can be made if as many CSL points as possible are contained in the
plane of the boundary. This simply means:

Preferred grain boundary planes are the closest packed planes of the corresponding CSL lattice.

We will ook at those grain boundary defects in the next sub-chapter.
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7.1.3 The DSC Lattice and Defects in Grain Boundaries:

Grain boundaries may contain special defects that only exist in grain boundaries; the most prominent
ones are grain boundary dislocations. Grain boundary dislocations are linear defects with all the
characteristics of |attice dislocations, but with very specific Burgers vectors that can only occur in grain
boundaries.

To construct grain boundary dislocations, we can use the universal Volterra definition.We start with

a"low 2" boundary and make a cut in the habit plane of the boundary. The cut line, as before, will
define the dislocation line vector | which by definition will be contained in the boundary.

Now we displace one grain with respect to the other grain by the Burgers vector b so asto preserve
the structure of the boundary everywhere except around the dislocation line. In other words: the
structure of the boundary after the shift looks exactly as before the shift.

What does that mean? What is the "structure of the boundary" and how do we preserveit?

WEell, we have a CSL on both sides of the boundary. We certainly will preserve the structure of the
boundary if we shift by atrandlation vector of the CSL, i.e. by arather large Burgers vector. We
than would preserve the coincidence site lattice - which isfine, but far too limited. We aready
preserve the structure of the boundary if we simply preserve the coincidence!

It is best to illustrate what this means with a simple animation: Two superimposed lattices form a
CSL marked in blue. The red lattice moves to the left, and at first there are no more coincidences of
lattice points - the CSL has disappeared and we have a different structure. However, after a short
distance of shifting - far smaller than a lattice vector of the CSL, coincidence points appears and we
have a CSL again - but with the coincidence points now in different positions.

@ .().()..D..D. @
ow Low Ln Ly
® ® ® ® @
0™ g8 g e g g
oooco°§°g°g°.o
] @
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We found a displacement vector that preserved the structure of the boundary - sort of
experimentally. There are others, too, and the possible displacements vectors that conserve the CSL
obvioudly are not limited to vectors of the crystal lattice; they can be much smaller. Thiswe can
generalize:

The set of al possible displacement vectors which preserve the CSL defines anew kind of lattice, the
so-called DSC-lattice. The abbreviation "DSC" stands for " Displacement Shift Complete”, not the best
of possible names, but time-honored by now.

A better way of thinking about it would be to interprete the abbreviation as " Displacements which
are Symmetry Conserving". Displacing one grain of agrain boundary with aCSL by avector of the
corresponding DSC lattice thus preserves the structure of the boundary because it preserves the
symmetries of the CSL. We now conclude:

Translation vectors of the DSC |attice are possible Burgers vectors bgg for grain boundary

dislocations. Asfor lattice dislocations, only the smallest possible values will be encountered for
energetic reasons.

Grain boundary dislocations constructed in thisway by (\Volterra) definition, have most of the
properties of real dislocations - just with the added restriction that they are confined to the
boundary. Strain- and stressfield, line energy, interactions, forming of networks - everything
follows the same equations and rules that we found for lattice dislocations.
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It remains to be seen how the DSC-lattice can be constructed. From theillustration it is clear that

every vector that moves alattice site of grain 1 to alattice site of grain 2 is a DSC-lattice vector.
Thisleadsto asimple "working" definition:

The DSC-lattice is the coarsest sub-lattice of the CSL that has all atoms of both |attices on its lattice
points. Most lattice points of the DSC-lattice, however, will be empty

Thisisthe DSC-lattice for the animation above. Its
. easy enough to obtain, but:

A formal and genera definition of the DSC lattice
(including near CSL orientations) is one of the most
difficult undertakings in grain boundary theory. If
you love tough nuts, turn to chapter 7.3 and proceed.

Any tranglation of one of the two crystals along a vector of the orange DSC-lattice will keep the
CSL, but will generally shift its origin. Only if a DSC vector is chosen that is also a vector of the
CSL, will the origin of the CSL remain in place.

L ooking back at the =5 boundary from before, we now can enact the cut and the displacement

procedure and generate a picture of the dislocations that must result. The result contains a little
surprise and is shown in cross-section below:

<100>
SNFERASEPUASEDER D
—C !15(210},4?!;“ ¢ | Shift
/(/‘\ * ) 7 Cut
= =l
0

S I f\k
® T @ T . 1 O

The cut was made from the right. The top crystal (red lattice points) was shifted by a unit vector of
the DSC lattice, which is a 1/5<210> vector in both crystal latticesin this case. The second crystal

(green lattice points) was left completely unchanged. The coincidence points are blue. We observe
two somewhat surprising effects:

The boundary plane (as indicate by the pink line) after the shift is not identical with the plane of the
cut
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7.1.3 The DSC Lattice and Defects in Grain Boundaries:

The CSL has an interruption in both grains - it doesn't fit anymore. Disturbing - but totally
unimportant. The CSL, after all, istotally meaningless for real crystals - the (mathematical)
coincidence points in the grains have no significance for the grains. The only significance of a
coincidence orientation isthat it provides an especially good fit of the two grains at a boundary, i.e.
it alows for aparticularly favorable boundary structure. And the structure of the grain boundary is
unchanged by the introduction of the grain boundary dislocation, except around its core region.
Thisisindicated by the characteristic diamond shapes (yellow) in the picture above that can be
taken as the hallmark of this 5 structure.

Think about it! Finding the yellow diamonds is the practical way of finding the position of the
boundary. However you define the position - you will find the preserved structure as expressed in
the yellow diamonds here.

Introducing the grain boundary dislocation thus had the unexpected additional effect of introducing
astep in the grain boundary. Some atoms had to be changed from green to red to obtain the
structure, but that again is an artifact of the representation. Real atoms are all the same; they do not
come in green and red and do not care to which crystal they belong.

We see that the recipe works: Dislocations in the DSC lattice preserve the structure of the boundary;

they leave the coincidence relation unchanged. However, they also may introduce steps in the plane of

the boundary -we cannot yet be sure that this always the case.
Note that is not directly obvious how the step relates to the dislocation, i.e. how the vector
describing the step can be deduced from the DSC lattice vector used as Burgers vector. (If you see
an obvious relationship - please tell me. I'm not aware of asimple formula applicablein all cases).
Note also: While many (if not all) grain boundary dislocations are linked with a step, the reverseis
not true: There are many possible stepsin a boundary that do not have any dislocation character.
Moreto that in chapter 8.3

The extension to three dimensionsis obvious, but also a bit mind-boggling. Still, some general rules can
be given
The larger the elementary cell of the CSL, the smaller the elementary cell of the DSC-lattice!

If you suspected it by now: The DSC lattice indeed can be seen as the reciprocal lattice (in space)
of the CSL.

The volumes of CSL, crystal lattice and DSC latticerelateas > : 1: ¥ -1 for cubic crystals.

What are al these lattices good for? The main import is:

A grain boundary between two grainsthat is close to, but not exactly at alow-energy (= low %)
orientation may decrease its energy if grain boundary dislocations with a Burgers vector of the DSC
|attice belonging to the low-Z orientation are introduced so that the dislocation free parts are now in
the precise CSL orientation and all the misalignment is taken up by the grain boundary
dislocations.

We will see how this works in the next sub-chapter.
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7.2.1 Small Angle Grain Boundaries and Beyond

7.2 Grain Boundary Dislocations

7.2.1 Small Angle Grain Boundaries and Beyond

The determination of the precise dislocation structure needed to transform a near-coincidence boundary
into a true coincidence boundary with some superimposed grain boundary dislocation network can be
exceedingly difficult (to you, not to the crystal), especially when the steps possibly associated with the
grain boundary dislocations must be accounted for, too.
Nevertheless, the structure thus obtained is what you will seeina TEM picture - the crystal has no
problem whatsoever to "solve" this problem!

In order to get familiar with the concept, it is easiest, to consider the environment of the 2= 1 grain
boundary, i.e. the boundary between two crystals with almost identical orientation.

This kind of boundary is known as "small-angle grain boundary" (SAGB) , or, as aready used
above as "1 boundary".

We can easily imagine the two extreme cases: A puretilt and a pure twist boundary; they are shown
below.

Pure tilt Pure twist

Obvioudly, we are somewhat off the 21 position. Introducing grain boundary dislocations now will
establish the exact 21 relation between the dislocations (and something heavily disturbed at the
dislocation cores). The DSC-lattice aswell the CSL are identical with the crystal lattice in this
case, so the grain-boundary dislocations are simple lattice dislocations.

Introducing a sequence of edge dislocations in the tilt case and a network (not necessarily square)
of screw dislocations in the twist case will do the necessary transformation; thisis schematically
shown below
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7.2.1 Small Angle Grain Boundaries and Beyond

Pure tilt

Pure twigt

This may not be directly obvious, but we will be looking at those structuresin great detail in the next
paragraph. Here we note the important points again:

Between the dislocation lines we now have a perfect 21 relation (apart from some elastic bending).

All of the misfit relative to a perfect Z orientation is concentrated in the grain boundary
dislocations.
We thus lowered the grain boundary energy in the area between the dislocations and raised it along
the dislocations - there is the possibility of optimizing the grain boundary energy. The outcome
quite generadly is:
Grain boundaries containing grain boundary dislocations which account for small misfitsrelative to a
preferred (low) Z orientation, are in general preferable to dislocation-free boundaries.
The Burgers vectors of the grain boundary dislocations could be translation vectors of one of the
crystals, but that is energetically not favorable because the Burgers vectors are large and the energy

of adislocation scales with Gb2 and there is a much better aternative:

The dislocations accounting for small deviations from alow Z orientation are dislocations in the
DSC lattice belonging to the CSL |attice that the grain boundary % endeavors to assume. Why
should that be so? There are several reasons:

1. Didocationsin the DSC lattice belong to both crystals since the DSC lattice is defined in
both crystals.

2. Burgers vectors of the DSC lattice are smaller than Burgers vectors of the crystal lattice, the
energy of several DSC lattice dislocations with a Burgers vector sum equal to that of a
crystal lattice dislocations thus is always much smaller. With
2;b;(DSC) = b(L attice), we always have
>:0;2(DSC) << b2(L attice).

Thisis exactly the same consideration as in the case of lattice dislocations split into partial
dislocations.

3. A dislocation arrangement with the same "Burgers vector count” along some arbitrary
vector r produces exactly the same displacement (remember the basic Volterra definition
and the doubl e cut procedure).

In other words: We can aways imagine alow angle boundary of crystal |attice dislocations that
produces exactly the small misorientation needed to turn an arbitrary boundary to the nearest low =
position and superimpose it on this boundary.

Next, we decompose the crystal lattice dislocations into dislocations of the DSC |attice belonging

to the low X orientation.

Thiswill be the dislocation network that we are going to find in the real boundary!

Letsillustrate this. First we construct another kind of DSC lattice dislocation, very similar, but different
to the one we had before. The coincidence points are marked in blue, atoms of the two crystal latticesin

green and red.
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7.2.1 Small Angle Grain Boundaries and Beyond

The plane of the cut now is perpendicular to the boundary and extends, by necessity, all the way to
the boundary. We produced a DSC edge dislocation with a Burgers vector perpendicular to the
boundary plane (and a step of the boundary plane).

Inserted
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If we were to repeat this procedure at regular intervals along the boundary, we obtain the structure
schematically outlined below.

® CSL - lattice _’——_:-WHHHHH
sainal ra

In essence, we superimposed atilt component with atilt angle a that for small anglesisgiven by is
given by

Q
I
ol o

with d = spacing of the DSC lattice dislocations and b = Burgers vector of the DSC lattice
dislocations.

In short, we can do everything with DSC lattice dislocations in a grain boundary that we can do with
crystal lattice dislocations. This leads to the crucial question alluded to before:

How do we calculate the DSC-lattice? As an example for the most general case of grain boundaries
in triclinic lattices? Or even worse: For phase boundaries between two different lattices (with
different lattice constants)?

The answer is: Use the "Bollmann theory or "O-lattice theory" - it covers (almost) everything.
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7.2.1 Small Angle Grain Boundaries and Beyond

However, unless you are willing to devote a few months of your time in learning the concept and
the math of the O-lattice theory, you will encounter problems - it is not an easy concept to grasp.

We will deal with the O-lattice theory in a backbone 11 section, here we note that the most
important cases have been tabulated. Some solutions for fcc crystals are given in the table:

> Generation b from DSC-lattice

1 "Small-angle GB" al2 <110>, possibly split into partials
3 Twin al6 <112>, al3 <111>

5 37° around <100> a/10 <130>

9 39,9° around <110> 1/18<114>, 1/9<122>, 1/18<127>,
19 26,5° around <110> al38 <116>, a/19<133>, &/19 <10,9,3>
41 12,7° around <100> al82<41,5,4>, al82<910>, ...

Interestingly (and very satisfyingly), the DSC lattice vectors belonging to the ~ = 3 boundary are
our old acquaintances, the partial Burgers vectors associated with stacking faultsin the crystal

lattice.
Thisisbut natural - aZ = 3 twin boundary is after all avery close relative to stacking faults.

’ Now a question might come up: < = 41 is not exactly a"low %" value; and Burgers vectors of
a/82<41,5,4> appear to be a bit odd, too. So does this still make sense? Are boundaries closeto a 241
orientation still special and bound to have grain boundary dislocations?

Only the experiment can tell. The following TEM picture shows a 241 grain boundary (from
Dingley and Pond, ActaMet. 27, 667, 1979)

A network of grain boundary dislocations with
Burgers vectors b = a/82 <41,5,4> and an
average distance of 20 nm isvisible. Thetwo
sets of dislocations run parallel to the lines
indicated by H and J.

Sorry, but it isthere, even at =~ = 41. Why - we
do not really know, although Bollmann theory
does provide an answer on occasion.

’ Obvioudly, if you want to understand the structure of grain boundaries, you must accept the concept of
grain boundary dislocations even at rather large values of Z and correspondingly low values of the
Burgers vectors.
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7.2.1 Small Angle Grain Boundaries and Beyond

In the next paragraph we will study some cases in more detail.
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7.2.2 Case Studies: Small Angle Grain Boundaries in Silicon |

7.2.2 Case Studies: Small Angle Grain Boundaries in Silicon |

’ First we will take a close look at some small angle grain boundariesin Silicon. Whereas they are the most simple

boundaries imaginable, they are still complex enough to merit some attention. They are also suitable to demonstrate a few
more essential properties of grain boundary dislocations.

Letsfirst look at apuretilt boundary as outlined in the preceding paragraph. Below is shown how edge dislocations

can accommodate the misfit relative to the ~ = 1 orientation (for a boundary plane that contains the dislocations
lines).

The distance d between the dislocationsis for small tilt anglesa as
—+ +b before given by

Fi

Q
1
ol o

Thisisasimple version of ageneral relation betwen Burgers vectors and
misorientation in small angle grain boundaries called Franks formula
(more correctly Frank-Bilby formula).

Inred lifeit looks slightly more complicated - but not much:

Thisisan early HRTEM of asmall angletilt boundary in Si. Thered
lines mark the edge dislocations, the blue lines indicate the tilt angle.

i

gL

This picture nicely illustrates that we have indeed a 21 relationship in
the area between the dislocations, i.e. a perfect crystal. The dislocations
arenot al in arow, but that does not really matter.

’ Next, we look at twist boundaries.

These and some of the other boundaries were artificially produced to study the structure. Two specimens of Si with a
desired orientation relationship were placed on top of each other and "sintered” or "welded" together at high

temperatures. This process, first called "sintering” is now known as "waferbonding" and used for technical
applications.

Theresult for adight twist between {100} planesis shown in the next picture:
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7.2.2 Case Studies: Small Angle Grain Boundaries in Silicon |

’ Thisisaremarkable picture. As ascertained by contrast analysis, it shows a square network of pure screw dislocations.
The picture is remarkable not only because it shows arather perfect square network of screw dislocations, but becauseit is
obviously abright field TEM micrograph, however with aresolution akin to weak-beam conditions.

Pictures like this one are obtained by orienting the specimen close to a{100} (or, in other cases, {111}) orientation
thus exciting many reflections weakly. All dislocations are then imaged, but the detailed contrast mechanism causing
the superb resolution is not too clear.
’ Letsfirst find out why a network like this can produce the required twist. We do thisin reverse order, i.e. we will construct
ascrew didlocation network in a perfect crystal and see what it does.
We start by looking at {100} lattice planes below and above the (future) grain boundary plane. They are exactly on
top of each other, we obtain a (trivial) picture of aformal low-angle twist boundary with twist angle a = 0°.

Now we introduce two screw dislocations running from left to right. Referring to the same kind of picturein chapter

5, we see that the lattice planes bel ow the screw dislocations are bent to the right (blue lines), above the screw
dislocationsto the | eft:
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7.2.2 Case Studies: Small Angle Grain Boundaries in Silicon |

With many dislocations, the average orientation of the lattice planes below the small angle grain boundary will rotate
to the right, above to the left. The combined effect is shown below.

If we want to rotate not just one set of lattice planes, but all of the top part of the crystal, we need at least a second set of
screw dislocations. This produces a screw dislocation network of the kind shown in the TEM micrograph above.

The relation between the twist angle a and the dislocation spacing d is again a simple version of the general case
given in Franks formula:

A detailed drawing of this dislocation network structure can be viewed in the link.

With luck, it is possible to image the lattice planein aHRTEM micrograph. The link shows examples - the only
HRTEM image of screw dislocations obtained so far.

The exact geometry of the network for the same twist angle a in an arbitrary twist boundary depends on many factors:

The twist angle a which determines the spacing between the dislocations. For 2 = 1 boundaries it simply the twist
angleitself, for arbitrary boundariesit is the twist angle needed to bring the boundary to the closest low X orientation

The Burgers vectors of the dislocations. Even in small-angle grain boundaries they could be perfect, or split into
partials. In arbitrary boundaries they must be grain boundary dislocations with a Burgers vector of the proper DSC
lattice. Note that a network of grain boundary screw dislocations simply superimposes some twist to whatever
orientation the boundary has without those dislocations.

The type of the dislocations. For an arbitrary twist plane, the Burgers vectors of the possible dislocations are not
necessarily contained in the grain boundary plane; the required pure screw dislocations do not exist. In this case
mixed dislocations must be used with a component of the Burgers vector in the grain boundary plane.

The symmetries of the two crystal planesin contact at the grain boundary - even low-angle twist boundaries with a
twist around the <100> axis can be joined on planes other than {100}.

The complications that may arise because the (perfect) dislocations split into partials. Obvioudly, that has not
happened in the case shown above. The reason most likely is that the splitting would have to be on two different
{111} planesinclined to the boundary plane (look at your Thompson tetrahedron!) which leads to very unfavorable
knot configurations. Since the distance between dislocations is of the same order of magnitude as the typical distance
between partials, we do not observe splitting into partials or dissociation of the knots.
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7.2.2 Case Studies: Small Angle Grain Boundaries in Silicon |

’ We now can understand the very regular square network shown in the picture above - it is really about the most simple
structure imaginable.
But we still need to explain the interruptionsin the network; the lines along which the net is shifted. In fact, to seea
very regular network like this you must be pretty lucky; more often than not often (artificially) made twist grain
boundarieslook like this:

Both pictures show the result of the attempt to make a pure twist boundary. Whereas the | eft one still looks like the
picture above - just with more interruption of the network - the right one does not convey the impression of a square
network at all.

The answer is that these grain boundaries must accommodate more that just a pure twist: Thereisalso atilt
component and the plane of the grain boundary is not exactly {100}. We will pick up this subject again in the next
paragraph; more information about the right-hand side picture can be found in the link.
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’ The recipe for "making" small angle grain boundariesin Silicon given in the preceding paragraph can be
used for twist boundaries on any plane, besides the {100} plane the {111} planes are particular

interesting.

The structure will be much more complicated and serves to illustrate the importance of the grain
boundary plane for given orientations. The picture below is abright-field TEM micrograph
(obtained under the specific bright-field conditions that rival weak-beam resolution mentioned

before) and shows all dislocations present.

Thisis also an example of what may
happen to you when you sit down at an
€l ectron microscope with your specimen
and start to look at it.

Y ou know what to expect (a small angle
twist grain boundary) in general, but now
you see fascinating things - can you
understand what you see?

And, in extrapolation, can you understand
what you see if you do not know
beforehand what to expect?

’ WEell, we can understand most of the structure seen above. Lets construct it step by step

K

\VAVA

S
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There must be a network of screw
dislocations with b = a/2<110>. Since
three Burgers vectors of thiskind are
contained in agiven {111} plane, we
expect a hexagonal network as shown
on the | eft.

The knots where six dislocations meet
can not be expected to be stable; we
would expect a splitting leading to the
honeycomb pattern illustrated on the
left (with a changed scale for clarity).




7.2.3 Case Studies: Small Angle Grain Boundaries in Silicon I

In contrast to the { 100} twist
boundary, the dislocations now can

split into partial dislocationsin the
plane of the boundary, we expect that
the dislocations are split in this case.
Working through the geometry we see
that everything fits at one knot, it can
easily be extended in the way shown.
This optimizes the energy gain by
large separations between the partials
while at the same time keeping the
stacking fault area small.

The "constricted" knots now ook
"funny" - again 6 dislocations meet at
one point. Can we split the knot to
something more favorable?

Indeed, we can, as shown on the |eft.
However, we only can do this by
introducing more Shockley
dislocations and extrinsic stacking

\ faults

Extrinsic
stacking fault

Putting everything together we obtain
anetwork of Shockley dislocations
that corresponds exactly to what we
seein the regular parts of the
micrograph above. The exact
geometry, of course, depends mainly
on the stacking fault energies - here
we may find differencesif we would
look at similar grain boundariesin
other fcc materials.

’ It remains to explain the various non-regularities of the picture.

Most conspicuous are the large "blobs"' with just a trace of some hexagonal structure. They are
simply SiO,, precipitates |eft over from the welding process; the hexagonal structures are Moir ée

patter nsthat always appear whenever two regular structures are put on top of each other.
’ The other irregularities are formed by a superposition of:

A few edge dislocations to accommodate some tilt component.

Didlocations that moved from somewhere in the crystal into the grain boundary where they were
caught and incorporated into the network. These dislocations are called extraneous or extrinsic
grain boundary dislocations because they are not an integral part of the grain boundary structure.

Didlocations needed to accommodate steps, i.e. changes of the grain boundary plane measuring a
few atomic distances.
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’ It isnot always clear or easily analyzed exactly what it is that you see. Especially the connection

between steps and intrinsic or extrinsic dislocation is, in general, quite complicated, because on the one
side most, but not all grain boundary dislocations automatically introduce steps, while on the other side
most, but not all steps introduce dislocations. We will deal with that matter in more detail when dealing

with phase boundaries.

’ But we are not yet done with the low-angle twist boundary on {111}. The micrograph above shows only

part of the structure. The micrograph below shows more:

The lower inset shows a magnified view
of the network from the lower half of
the boundary; the upper inset from the
upper half. (Click on the picture for an
enlargement and more information),

Whereas the lower part shows the
network discussed above, the upper part
shows something new: A rather simple
network with reduced spacing. Detailed
analysis reveals that the dislocations in
the upper part have Burgers vectorsb =
a/6<112>, but they are not proper
Shockley partials, because there are no
stacking faults between the dislocations.

They are rather dislocationsin the DSC
lattice of aZ = 3 boundary - in other
words, the low angle twist boundary has
split into two twin boundaries with a
superimposed dislocation network in
one of the twin boundaries.

We may ask: Why? And in which twin
boundary are the dislocations? Why are
they not in the perfect lattice between
the boundaries?

’ It seems to ever end. But in order not to have too much detail in the main backbone part, these

complications will be discussed in an advanced section.
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7.2.4 Generalization

The relation between the spacing of the dislocations and the tilt- or twist angle in the special cases given
was simple enough - but what about arbitrary small angle grain boundaries with twist and tilt
components? What kind of dislocation structure and what geometry should be expected?
Aswe have seen, the detailed structure of the network can be quite complicated and depends on
materials parameters like stacking fault energies. We can not expect to have asimple formula
giving us the answers.
The relation giving the distance between dislocations in a boundary and the orientation relationship
for arbitrary low-angle orientations (meaning that the two rotation angles needed for a general
description are both small, lets say < 100 - 150) was first given by Frank. It is Franks formula
referred to before.
Franks formulais derived in the advanced section, here we only give the result. The low-angle grain
boundary shall be described by:

Its dislocation network consisting of dislocations with Burgers vectors b.

An arbitrary vector r contained in the plane of the boundary.

A (small) angle a around an arbitrary axis described by the (unit) vector | (then oneangleis
enough) that describes the orientation relationship between the grains. We may then represent the

rotation by apolar vector R=a - |
Franks formulathenis:

|Co
1

—~

|=

. a
X _)-Zsmz

with B = sum of all the specific Burgersvectorsb; cutby r ;i.e. B = Z; by.

Since the formulais formally applicable to any boundary, but does not make much sense for large
angles a (can you see why?) we only consider low-angle boundaries. Then we can replace sin a/2
approximately by a/2 and obtain the simplified version

B=(rxl)-a

Let'sillustrate this:

Dislocation
networls

Grain boundary
plane
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7.2.4 Generalization

Shown are two vectorsr4 and r, contained in a boundary plane with an arbitrarily chosen
dislocation network consisting of two types of dislocations having Burgers vectors b, and b,.

Franks formula ascertains that (r x |) - a equals the sum of the Burgers vectors encountered by r,
i.e.B=2b, + 3b, forry, and B = 3b, for r; in the picture above.

Thisisamajor achievement, but not overly helpful when you try to find out the geometry of the
network for some arbitrary boundary, because their is no ssmple and unique way of decomposing a
sum of Burgers vectorsinto itsindividual parts.

This"simple" formula, however, contains the special cases that we have considered before, and leaves
enough room for complications. It does not, however, say anything about preferred planes or network
geometries, For this one needs the full power of Bollmanns O-lattice theory.

Franks formulais not applicable to large angle grain boundaries because the distance between the
dislocations would become so small as to be meaningless.

In this case the grain boundary may be viewed as the (dislocation free) "low " boundary closest to
the actual orientation with a superimposed low-angle grain boundary formed by dislocationsin the
corresponding DSC lattice.

Franks formulathen can be used for the low angle part and will give the correct over-all Burgers
vector count.
The precise geometry of the network, however, can become hopelessly complicated because all the
additional features, e.g. extrinsic dislocations and steps, are not only still present but become more
complicated, too.
In addition, some specia perversions may evolve, e.g. the splitting of DSC lattice dislocations into
partial dislocationsin the DSC lattice, producing stacking faultsin the DSC lattice!

And we are implicitly talking grain boundaries between cubic crystals! In less symmetric crystals
everything is even more complicated - it is time then to study O-lattice theory!

One last feature should be mentioned that now can be understood: The reactions of lattice dislocations
that move into grain boundaries. So far, agrain boundary was just seen as an internal surface on which a
dislocation can somehow end.
Now we know better: It simply decomposes into the intrinsic (DSC-lattice) grain boundary
dislocations present. Thisis quite satisfying because the logical problems encountered when
thinking more in more detail about how a dislocation "just ends’ on agrain boundary. It isalso
what one seesif looking closely, an example is shown in the illustration.
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7.3 O-Lattice Theory

7.3.1 The Basic Concept

Formulas here have plenty of indices, underlining etc. - and we will now give up the cursive font normally used
for variables because it gets too cumbersome.

Basic |dea

The Coincidence Site lattice (CSL) provided arelatively easy way to grasp the concept of specia orientations
between grains that give cause for special grain boundaries. With the extension to grain boundary dislocationsin
the DSC lattice, the CSL concept becamein principle applicable to al grain boundaries, because any arbitrary
orientation is"near” a CSL orientation. But yet, the CSL concept is not powerful enough to allow the deduction
of grain boundary structures in all possible cases. The reasons for this are physical, practical and mathematical:

The CSL by itself is meaningless; meaningful isthe special grain boundary structure that is possibleif there

is a coincidence orientation. The grain boundary structure is special, because it is periodic (with the
periodicity of the CSL) and contains coincidence points (cf. the picture).

But we have no guarantee that periodic grain boundary structures may not exist in cases where no CSL
exists; i.e. by only looking at CSL orientation, we may miss other special orientations. That will be certainly
true whenever we consider boundaries between different lattices - be it that lattice constants of the same
materials changed ever so dightly because one grain has a somewhat different impurity concentration, or
that we look at phase boundaries between different crystals. If the lattice constants are incommensurabl e,
there will beno CSL at all.

Aswe have seen, even aCSL with Z = 41 issignificant, even so it is virtually unrecognizable as anything
specid inadrawing. Thisis an expression of the mathematical condition, that you either have perfect
coincidence or none. If two points coincide almost, but not quite, no recognizable CSL will be seen. If two
lattice points coincide except for, lets say, 0,01 nm, we certainly would say we have a physical coincidence,
but mathematically we have none.

The sameistrue if we rotate alattice away from a coincidence position by arbitrarily small angles.
Mathematically, the coincidence is totally destroyed and the situation has completely changed, whereas
physically an arbitrarily small change of the orientation would be expected to cause only small changesin
properties.

Only avery small fraction of grain orientations have a CSL. The "trick" we used to transform any
orientation into a coincidence orientation by introducing grain boundary dislocationsin the DSC latticeis
somewhat questionable: the effect (= CSL) comes before the cause (= dislocations in the DSC lattice),
because at the orientation that we want to change no CSL and therefore no DSC lattice exists.

It becomes clear that the main problem liesin the discreteness of the CSL. Any useful theory for specia grain
boundary (and phase boundary) structures must be a continuum theory, i.e. give results for continuous variations
of the crystal orientation (and lattice type).

Thistheory exists, it is the so-called "O-lattice theory” of W. Bollmann; comprehensively published in his
opus magnus "Crystal Defects and Crystalline Interfaces" in 1970.

The O-lattice theory is not particularly easy to grasp. (Sorry, but it took me many hours, too). It iswell
beyond the scope of this hyperscript to go into details. What will be given is the basic concept, the big idess;
together with some formulas and afew examples. Y ou should first read just over it, trying to get the basic
ideas, than study it point by point. If you don't get it the first time - don't despair, you are in good if not
excellent company!

There are two basic ideas behind the O-lattice theory:

1. Takeacrystal lattice | and transform it in any way you like. That means you can not only rotate it into an
arbitrary orientation relative to crystal |, but also deform it by stretching, squeezing and shearing it. The
crystal lattice || generated in this way from asimple cubic lattice | thus could even be an arbitrarily oriented
triclinic lattice.

2. Now look for coincidence points between lattice | and lattice | 1. But do not restrict the search for
coinciding | attice points, but expand the concept of coincidence to al "equivalence points” within two
overlapping unit cells. What equivalence points are becomes clear in the illustration.
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Lattice I Lattice II

@ = equivalence point

lattice XD Transformation
points 1. Rotate 2. Deform

Pointsin lattice | and lattice || are called equivalent, if their space vectors are identical (always in their
respective lattice coordinate system).

TheBasic Formula

’ Let'slook at the exampleillustrated above. Lattice | is deformed by first rotating it and then stretching the axis
Xq; this produces lattice | |

An arbitrary point within the elementary cell of lattice | is described by avector r (1)

r(I) transformsinto avector r(11) by the transformation applied. The point reached within the unit cell of
lattice 11 by r(11) is then an equivalence point to the onein crystal I.
’ Of course there is more than one equivalence point; there is aways an infinite set defined by one point plus al
points reachable by alattice trandation vector T from this particular point.

Any pointr'(I1) inlattice |1 belonging to the set as defined above can be described in the coordinate system
of lattice |1 (defined by the units vectors X, (1) and xx(11)) by

| ey = () + T()

With T(I1) = any translation vector of latticell, or

| T(IN) = n-xq(I) + m - xx(11)

Andn,m=0,%£1,%£2, ...

’ All these points are by definition equivalence points to the corresponding set of pointsin lattice | given by

| @) =r@) + 1)

’ Let us designate the set of all equivalence points defined abovein lattice | by C; and the corresponding set in
lattice Il by C, and, for the sake of clarity, all vectors pointing to equivalence points of the respective sets by
r(Cp andr(Cy).

’ If we now look at acertain equivalence point in lattice 11, it dways originated from lattice | by the genera
transformation as shown in the picture below
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’ The blue | attice was obtained from the pink one by some transformation; in this case by a simple rotation.

The dark point with the red vector pointing to it isan arbitrary point in lattice | (for the sake of easy
recognition about in the center of alattice | cell).

After the transformation, it is now the red point at the apex of the blue and pink arrowsin latticeI1. It is till
about in the center of acell in lattice I, but for the particular transformation shown, it is now also about in
the center of alattice | cell - thereis (about) a coincidence of equivalence points.

Let's assume perfect coincidence, then the red point denotes coinciding equivalence points, i.e. equivalence
points that are "on top of each other".

’ We need a precise mathematical formulation that gives us the conditions under which coincidence of equivalence
points occeurs.

Thisis easy, we just have to consider that for coinciding equival ence points the blue vector in lattice |1 can
be obtained in two ways:

1. By the transformation equation from the corresponding red vector of lattice | (valid for all
equivalence points) or, since the coincidence point belongs to both lattices at once, by

2. adding some trandlation vector of lattice | to the red vector. Thisis symbolically shown in the picture.
In formulas we can write for any vector in lattice || pointing to some equivalent point of the set C»:

1(C) = A{r(Cy}

1(C) = A-1{rc,o)

With A = transformation matrix (we will encounter examples for A later; see also the basic module for
matrix calculus) since this simply describes how lattice |1 originates from lattice |. Thiswas the first way
mentioned above.

On the other hand, we can obtain new equivalence pointsin lattice, i.e. other elements of the set C;
designated by &(C,) quite generally by the equation

| &(Cq) = r(Cy + T(I)

We will now use these relations for coinciding equivalence points:

’ We are looking for coincidences of any one member of the set r (C,) with any one member of the set r (C,); any
coincidence point thus obtained will be named r . Since this point, describablein lattice |1 by r (C,) must be
reachableinlattice | by first going down r(C;) and then adding a translation vector of lattice |, we obtain

| 1(Cy = (CY+T(I) =g
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Using the transformation equation for lattice | from above and substituting it into the above equation yields

fo=Al{rg + T()

Wewroter  instead of r(C,) because we do not need the distinction between the sets C, and C, any more
because r o belongs to both sets.

Rearranging the terms following matrix calculus by using the identity or unit transformation matrix |, we
obtain the fundamental equation of O-lattice theory:

(I =AL)rg = T()

What does that equation mean?

For a given transformation, i.e. for given orientation relationship between two grains, its solution for r
defines all the coincidence points or O-points of the lattices. The coincidence of lattice pointsis a subset of
the general solution for the coincidence of equivalence points.
The question comes up if there are any solution of this equation. Algebratells us that this requires that the
determinant of the matrix, || — A-1|, must be # 0. Thiswill be generally true (but not always), so generally
we must expect that solutions exigt, i.e. that a CSL (= O-lattice) for some equivalence points (= O-points)
exists - for any possible combination of lattice | and latticell.
How do we solve the O-lattice equation, i.e. obtain the set of O-points for a given lattice and transformation?
Simply by inverting the matrix we obtain:

ro= (1 — AL)=L.1(1)

That is al thereisto do; it looks easy. If we have a given transformation matrix A, the equation above gives us
the set of vectors defining the equivalent points, or as we are going to call them, the O-points of the two lattices.

However, the diffusion equations look easy, too, but are not easy to solve. Also, we do not yet know what
the solution, the O-lattice, really means with respect to grain- or phase-boundaries.

We will look at this more closely in the next paragraph; but first we will discuss asimple example.

Examplefor Caculating the O-L attice

To keep the matter simple, we look at a two-dimensional situation where a square lattice rotates on top of another
one. Thiswill include our former example of the >~ =5 CSL case. (A word of warning: In Bollmanns book are
occasiona mistakes when it comes to the 35 orientation (which is frequently used for illustrations)).

The transformation matrix is a pure rotation matrix, for the rotation angle a it writes
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_ [Jcosa —sina
Usna cosa U

From this we get
A-L = [jcosa sna
~ O-sina cosa O
l-cosa -—sna
_ A1 =0 0
! A 0 sna 1-cosa U
1 _ A-1)yl= 0O Yo —Yacotan a/2
1 - )= 0 Ycotan a/2 Yy O

’ Now let's do an example. The base vectors of the square lattice | are x4(1) = (1, 0), Xx(1) = (0, 1).

If we use them as the smallest possible translation vector T (1) of lattice I, we obtain by multiplication with
the last matrix the smallest vectors of the O-lattice which then must be the unit vectors of the O-lattice, u,

and u,:

U Y2 0
U =0 0
0 % - cotan (a/2) O

0-% - cotan (a/2) O
u =0 0
O Yo 0

Thisiseasily graphically represented, but the pictures get to be a bit complicated:
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Lattice | isthe blue lattice, lattice || the red one; it has been rotated by the angle a.

The unit vectors of the O-lattice can be determined by the intersection of the light- and dark-green lines
(remember the definition of tan and cotan!); they are depicted in black.

The O-lattice then can be constructed, its lattice points are shown as orange blabs.

Note that a three dimensional expansion would not produce much that is new. On any plane above or below the
drawing plane, the situation is exactly what we have drawn. This has one interesting consequence, however:

In three dimension, we have no longer O-points, but O-linesin this case.

The O-lattice in this case thus is not a point lattice, but alattice of lines perpendicular to the plane of
rotation. Thiswill come up naturally later, but it is good to keep it in mind for what follows. However, since
thisis not the most general case, we will keep talking of O-points.
The picture neatly helps to overcome a possible misunder standing: For any O-point, avector from the origin of
either crystal to the O-point (our vectorsr(I) and r (I1)) point to a coinciding equivalence point or O-point, but
different points of the O-lattice may be different equivalence points. In the example we have O-points that are
amost at the center of both unit cells, or amost at alattice point of both unit cells - the O-lattice seemsto be
constructed of two kinds of coinciding equivalence points; but:
If we would include more cells of the O-lattice, we would see that equivalence points shift slightly for the
example given. A few O-lattice cells away, they would be more off-center or more distant to a lattice point
than close to the origin of the O-lattice.
Just how many equivalence points of the set of equivalence points (which has an infinite number of
members) are needed for an O-lattice is an important (nontrivial) question which we will take up later again.

We can rephrase this important question:

Is the pattern of equivalence points periodic (= finite number of equivalence point) or non-periodic (infinite
number)? In other words: If any one point of the O-lattice defines a specific equivalence point in the crystal
lattices, does this specific point appear again at some other point in the O-lattice (apart from the trivial
symmetries of the O-lattice)?

We will come back to this question later; it is the decisive feature of the O-lattice for defining the
DSC-lattice.

How do we get the CSL from the O-lattice? That is easy: It must be that particular subset of all possible
O-lattices where all O-points are also lattice points in both lattices.

Looking at the unit vectors of the O-lattice, however, there is no way of expressing them in integer values of
the base vectors of lattice |, because one component is always 1/2. How about that?

Thisisnot areal problem, best illustrated with an example: If we chose a = 36952,2', we have
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0 s O O 1720
U =0 0= 0 0
0 %-cotan (a/2) O O 320

(+%-cotan (a/2) 0 [+3/20
u =0 U U U
U Yo 0 0O Y20

Thus every second point of the O-lattice is alattice point in both lattices (depicting O- points of the

equivalence class [0,0]), these points thus define the ~ = 5 CSL . The other O-points are of the equivalence
class[1/2,1/2]. CSL lattices (two-dimensional case) thus correspond to specific O-lattices, but with lattice
constant possibly larger by someinteger value. Thisis quite important so we will illustrate thisin a specia

module.

Note, too, that in this case the pattern of equivalence point isobviously periodic, so we have afirst specific
answer to the question asked above.

Before we delve deeper into the intricacies of O-lattice theory, we shall first discuss some of its general
implicationsin the next paragraphs.
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7.3.2 Working with the O-Lattice

The math and physics of the O-lattice is not particularly easy because there are some tricky details to
keep in mind. In this paragraph some of the problems, tricks and helpful definitions are just summarized;
in due time they may be specified in more details.

It is useful in many cases to decompose the transformation matrix A into matrices that describe the

volume deformation (elongating or shortening only the axes of the crystal), the shear deformation (only

changing the angles between the axes), and the rotation of the coordinate system of crystal | separately.
This may allow a better grasp of the real situation and helps, if necessary, to use approximations
only for suitable parts of the system.
The main reason, however, liesin the fact that the pure rotation is not unambiguously defined.
Depending on the basic symmetries of the system, the same final state of orientation can be
obtained by many different rotations - but only one (or one set) may make sense physically. This
leads to the next point:

The choice between various possible transformations A. There are many possible ambiguities, not only
with respect to the rotation part, but also, e.g., in the relations between pure shear and pure rotation; an
example is shown below.

Starting from agiven lattice |, identical lattices 11 can be produced either by pure shear or by pure
rotation:

Pure Rotation Pure Shear

Mathematically, there is no difference, but physically the two transformations are not the same because
the atoms involved have to move in quite different ways. Which one is the physically sound one? Asit
turns out, the criterion isto preserve nearest neighbor relationships.

Mathematically, this means that from all possible transformation matrices T, the particular one that
has to be chosen is the one with the smallest numerical value of its determinant | T|.

This ensures that the unit cell of the O-lattice generated will have the largest possible value (it is
directly given by 1/|T|), which will give the smallest possible dislocation content. This requires, of
course, that you know all the possibilities for A in thefirst place - not a satisfying condition for a
mathematician.

It may be noted in passing, that this ambiguity limits the usefulness of the O-lattice theory. There
are cases, where the choice of the transformation matrix following the rules of O-lattice theory,
does not lead to the "correct” solution as ascertained by looking at what the crystal does (by TEM).

Another generalization comes from looking at the essentials of solutions to matrix equations. Consider
the solutions of the basic equation

(I-ADrp=1
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From basic matrix algebrawe know that the type of solution depends on the rank of the matrix A.

We have the following cases:

o Rank(A)=3
The solutions define points in O-space, i.e. an O-lattice.

e Rank(A)=2
the solutions are O-lines.

o Rank(A)=1
The solutions are O-planes.

« Rank(A)=0,
we have the trivial case of identity 1.
Thisis an issue of prime importance!.

Since we can produce all grain boundaries (but not all phase boundaries) by just rotating crystal 11
around one properly chosen axis, the rank of the transformation matrix does not have to be larger
than 2.
What does this mean? Well - for grain boundaries, there is no such thing as a O-point lattice - it is
rather alattice of lines. We have essentialy atwo-dimensional problem.
Nevertheless, for the sake of generality, we will continue to discuss the "O-point lattice”, knowing
that it often isjust aline lattice.
Solving the basic equation produces the O-lattice and therefore also the unit cell of the O-lattice.
However, the "natural” unit cell obtained by simply connecting O-lattice points in some "obvious"
manner may not be the physically most sensible one!
Astaught in basic crystallography, there are many ways of defining unit cells - we have another
ambiguity!
We will tend to take the Wigner-Seitz cell. Why? Who knows at this point - just go along. What
thismeansisillustrated below:

Again, the right choice must come from the physical meaning of the O-lattice. This we will discuss
in the next paragraph. Here we note that O-lattice defined in this way resembles nothing so much as
a honeycomb - just remember again, that the O-points are lines. An.illustration that comesfairly
closein adightly different context ("Bollmanns view of Franks formula") can be accessed viathe
link.
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L ets pretend we are considering an actual grain boundary. We have found a suitable transformation
matrix that produces crystal 11 out of crystal | with the right orientation, we have solved the basic
equation, and we have constructed a suitable O-lattice. What does that give us?

We now must address the essential question: What is the significance of the O-lattice for grain- and
phase boundaries? What is the physical meaning? Thereis an easy answer and a difficult
implementation:
First of al, the O-lattice in itself has no physical meaning whatsoever - in thisit is exactly like the
CSL.

However, since it always exists (unlike the CSL) and is defined in both crystals, if you were to
design a boundary between two crystals of given orientation (and thus with one well-defined
O-lattice) that intersects as many O-lattice points as possible, you will obtain the best physical fit
along the boundary, i.e. probably the lowest grain boundary energies.

"Best physical fit" is not a very quantitative way of putting it. It means that the atoms to the left and
right of the boundary will not have to be moved very much to the positions they will eventually
occupy in the real boundary. This also can be expressed as "minimal strain” situation; the
expression Bollmann uses.

If atoms happen to sit on an O-lattice point, they do not have to move at al because then then
occupy equivalent positionsin both crystals; if they are close to an O-lattice point, they only move
very little, because at the O-pointsthefit is perfect.

The misfit increases moving away from an O-lattice point and reaches a maximum between
O-lattice points.
The crystals then can be expected to increase the area of best fit between O-lattice points and to
concentrate the misfit in the regions between O-lattice points - thiswill be a dislocation with Burgers
vector = lattice vector. We cannot, at this stage produce grain boundary dislocations, i.e. we are still
limited to small angle grain boundaries.
Thereisadirect important consequence from this for the basic equation: We can replace T(I) by
b(l), the set of possible Burgers vectors because they are always translation vectors of the lattice
and obtain

(I - A=) ro=b(1)

Remember that all translations vectors of the | attice are possible Burgers vectors; this came straight
from the Volterra definition of dislocations. The fact that observed Burgers vectors are always the
smallest possible trans ation vectors does not interfere with this statement - al it meansisthat a
"Bollmann" dislocation with alarge Burgers vector would immediately decompose into severa
dislocations with smaller vectors.
Our basic equation yields the base vectors of the O-lattice if we feed it with the base vectors, i.e. the
smallest possible tranglation vectors, of the crystal lattice. Since the Burgers vectorsin a given lattice are
pretty much the smallest possible translation vectors, too, we may see the O-lattice as some kind of
transformation of the b-lattice, the lattice defined by taking the permissible Burgers vectors of a crystal
as the base vectors of alattice.
The crucial point now isto realize that the lines of intersection of the the actual plane of the
boundary with the cell walls of the O-lattice (which, remember, looks like a honeycomb)), are the
dislocations in the grain boundary. Whenever we cross over from one cell in the honeycomb
structure to the next, we moved one Burgers vector apart in the real lattices. It ishelpful at this
point, to study the case of a small angle grain boundary treated in the advanced section under "
Bollmanns view of Franks formula’; the essential pictureis reproduced below.
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The magenta lines are the O-lattice lines; the honeycomb structure is shown in blue, and the intersection
with an arbitrary boundary plane produces the red dislocation network.
Thisiswhy it becomesimportant what kind of unit cell we pick for the O-lattice as mentioned
before. As always, there are many possible choices.
Bollmann gives precise directions for the choice of the "right" unit cell of the O-lattice - smply

take the largest one possible (producing as few dislocations as possible). We will not reproduce the
mathematical arguments; here we just note that it is possible to define an optimal O-lattice.

We now have a big difference in the mental construction of a grain boundary between the O-lattice
theory and the CSL theory. From the former we now have a rule for finding the optimal plane of agrain
boundary for any given orientation - whereas the CSL model provides this information only for CSL

orientations.
Thisrulewill prove to be very general: We will be ableto carry it over to the case of large angle
grain boundaries (remember, that all complications notwithstanding, we implicitly deal only with
small angle grain boundaries so far).
We also can obtain quantitative information about the dislocation structure in the chosen plane as
long as we we restrict ourselves to small angle grain boundaries.
In this case the O-lattice theory isjust a generalization of Franks formula - all you haveto do isto
replace "sina™ in the transformation matrix by "a" (and use the corresponding linearizations of all
other trigonometrical functions for small angles) - Franks formula will result.

In other words, as long as the spacing of the O-lattice is large compared to the crystal lattices, all of this

makes sense, and this condition is always met for small deformations, i.e. for small angle boundaries.
For O-lattices with lattice constants in the same order of magnitude as the crystals, however, the
spacing between the dislocation would be too small asto be physically meaningful - exactly as
before. So what is new?

Well, the O-lattice theory as a generalized version of Franks formula, is not just applicable to small
angle grain boundaries, but to "small deformation” boundaries of any kind, including phase
boundaries. Thisis already a remarkable achievement.
But, as we will see, the complete O-lattice theory also incorporates arbitrary ("large angle”)
boundaries of all types, too.
In order to progress, we now must ask the question: Are there any "special” O-lattices, or, in other
words, special orientations the crystals would prefer?

We aready know parts of the answer: Y es, there are preferred orientations for grain boundaries; the
CSL orientations, which, after all, must also be expressible in the O-lattice concept.
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From this we can go on and this will be dealt with in the next chapter.
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A CSL lattice by definition has coincidence pointsin both lattices, the CSL points thus are always
O-lattice points, too. The converse is not necessarily true (as we already have seen in the example):

The O-lattice of two crystalsin a CSL orientation thus must include the CSL |attice points as
O-lattice points. This O-lattice, however, may also have additional O-lattice points - al we can
deduce at this point is that the CSL lattice points must be a subset of the O-lattice points which
belong to the O-lattice that includes the specific CSL orientation.

We know that the CSL points are O-points which are always of the same equivalence type - they
are lattice points, to be precise. In other words, the O-lattice belonging to acertain CSL lattice, if
drawn into the coordinate system of one of the crystalsis periodic in this reference system.
Thisisnot ageneral property of an O-lattice - in general, every equivalence point defined by an
O-point could be different from all the others and there would be no periodicity.

Thisisbest visualized by drawing all equivalence points encountered for a given O-lattice (which, of
course, always has infinitely many points) into the unit cell of one of the crystals - we obtain the
so-called reduced O-lattice.
For a periodic reduced O-lattice, there would be a finite number of equivalence points; a
non-periodic lattice would lead to an infinite number of equivalence pointsin the reduced O-lattice.

Letslook at some examples:

Shown are elementary cells of one lattice

(blue) with the equivalence points occurring in
the O-lattice drawn in. In three cases the
O-lattice would be periodic; in the casein the
upper right, it would be non-periodic

Periodic O-lattices are clearly special; and it is self-evident that every CSL orientation must correspond
to aperiodic O-lattice. But thereis more.

At any O-lattice point in a periodic O-lattice, we have a certain arrangement of the crystal atoms
around that point, a specific pattern. Since in a periodic O-lattice there are only afinite number of
different equivalence points, there is only afinite number of distinct patterns, too.

Anindividual pattern is called a pattern element. There are as many pattern elements as there are
equivalent points in the reduced O-lattice.

Thisisacrucial concept in O-lattice theory, unfortunately it is not explained very well in
Bollmanns book. Let's see what is meant by pattern:
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NP

® O-point

Lattice 2

Shown are two lattices (blue and magenta which are superimposed) and one O-point (red). A
representation of the geometry of the atoms that you may put into the lattices is given by the yellow
triangles. They are simply constructed by connecting the lattice points of the two lattices "around"
the O-point with the O-point.

The picture also demonstrates (but does not prove) an universal theorem: Any O-point can be
chosen asthe origin for the transformation that produces lattice 2 from lattice 1 (hereitisasimple
rotation).

In anon-periodic O-lattice, the representation of patternsin the way shown is different at any O-point -
thisisalso rather difficult to draw.

Thisiswhere O-lattice theory gets hard to illustrate. Nobody surpasses Bollmann who provides
complicated drawings of patterns (done by hand!) in his book, one example is shown in the link.

The question now is: Which orientations provide periodic O-lattices? It appears that there is no simple
formula coming up with transformation matrices or angles for rotations that produce periodic O-lattices.
We have to go the other way and ask two questions for any possible orientation:

|s the corresponding O-lattice periodic?
If yes, how many pattern elements (= N) are contained in the reduced O-lattice?

What we want is N as afunction of some misorientation angle for some simple geometries. This needs
some numerical calculations; letslook at the results for rotations on the {110} planes of cubic crystals

The following picture shows N as afunction of the misorientation angle:

[ \lil kﬂ/ M\W /WJ\W 1th\ /JW\J“J /“\ﬁ& A f"‘“
LRI

T/ /p,n‘ /\«W 1

15 n 7 D 15 4 44

file:///L|/hyperscripts/def_en/kap_7/backbone/r7_3_4.html (2 of 5) [02.10.2007 16:17:13]


file:///L|/hyperscripts/def_en/kap_7/illustr/i7_3_1.html

7.3.4 Periodic O-Lattices and Pattern Elements

This again is one of Bollmanns trickier pictures (with some color added), because it is only
understandable if you read and understood much of what has been said before in hisbook (it is
neither explained what the difference is between the two curves - they have after all an identical
coordinate system, nor what the bold lines (here dark blue) implicate).

WEell, the N-values are given for two independent kinds of transformations which both include the
same rotation T (upper and lower curve), but one inlcudes a so-called "unimodul ar transformation”
in addition. The one with the smallest determinant which, as we have seen, is the one you should
use, changes from the upper curve to the lower curve at T = 30° and this explains the bold (or dark
blue) lines. Since the two curves are different, you now see that it matters, indeed, which
transformation matrix you pick.

Don't worry; it is not necessary to understand that in detail. Just acknowledge, that N can be

computed and that unambiguities with respect to different transformation matrices can be dealt with
somehow.

Also note that the "real" curve would be afractal with N = co for most values; it is smoothed here
by only counting the equivalence pointsin 100 "pixels" of the O-lattice (so N = 100 applies) and
stopping the numerical procedure after some time if it does not turn periodic anyway.

It is clear that there are several "specia™ orientations for this geometry with small values of N. This
looks good, however, we are not yet done. We are really looking for O-lattices that are periodic on a
short scale, i.e. the patterns should repeat after a short distance. This requires three ingredients:

Periodicity as astarter, i.e. N isfinite (or in reality e.g. N < 100 for numerical calculation).

Small values of N, because the pattern repeats after N steps - the larger N, the longer it takes for a
repetition. To give an example: For N = 10 you have to go out 10 lattice constants of the O-lattice
before the same pattern is encountered again.

Thisimmediately calls for small |attice constants of the O-lattice, too. Or, to be more general, for
small volumes Vo of the O-lattice cells.

The real measure for the periodicity of the O-lattice patterns is therefore not N, but the density N' of
periodic equivalence points given by

With |T| meaning the determinant of the transformation matrix, since Vo = 1/ |T| follows from
basic matrix algebra together with the definition of the O-|attice.

Now comes amajor point: N' is nothing but the number of crystal units (volume of unit cells or lattice
constants) per period of the pattern because the unit of the O-lattice is always (for periodic O-lattices) an
integer number of the crystal units!

In other words: N' corresponds directly to the measure of coincidence in the CSL model, the
number X! In fact, the numerical values are identical in most (but not all) cases: N' = Z.

The O-lattice theory, however, is not only much more general, but gives the recipes for calculating
N' (or 2). Try, for example, to find the CSL lattices for orientations between, say a cubic and a
monoclinic lattice: All you need are the deformation matrices; the rest can be done for all possible
cases by a computer program.

Just one case in point: What happens for perfectly well defined transformation matrices T, but with
|T|=0?N' inthis case will be .
Letslook at an example: Rotation of cubic lattices by an angle around a<110> direction:
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7.3.4 Periodic O-Lattices and Pattern Elements

Arg'e Tl N N’ 5
é%? 0,031 4 129 129
2%?86 0,055 4 73 73
3?%? 0,121 4 33 33
5%?2, 0,157 8 51 51
321?2, 0,210 4 19 19
5%2,3(?3' 0,111 1 9 9
2%‘?;, 0,000 00 1
5595,32, -0,030 1 33 33
371?;, 0,000 00 3

Two perfectly well defined rotationslead to | T | = 0; their > values are 11 and 3, respectively, while
N' isinfinity!
Thistells us that these particular orientations are much more special then implied by their Z values:

These orientations can be obtained by simpler transformations matrices of lower rank and they
correspond to grain boundaries with a particular high degree of "fitting" and thus low energy.

Thereisaso afirst real result: 211 boundaries should be rather common, and that's what they really
are.

’ We will not go into more details at this point; but it should become clear that thereisalot of power
behind the O-lattice theory.
However, even a this stage, calculations become tedious and need numerical methods. It would be
most useful to implement the basic equations in a computer program from now on - but | do not
know if this has been done.
And, always keep track of this: So far we have only dealt with "small deformation” boundaries and
with high angle boundaries having a periodic O-lattice. We are still some distance away from a
genera boundary.

’ We now need to do the next step - always, for easier understanding, in analogy to the CSL model of
grain boundary structures:
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What happens if the orientation of the two crystals (including arbitrary lattices and thus phase
boundaries, too) is close to, but not exactly at a"special” O-lattice orientation? " Special" meaning a
periodic O-lattice.

In other words, we are asking for possible structural defects which can be superimposed and will
change the (generally non-periodic) O-lattice of an arbitrary boundary (which is always defined)
just the right amount to generate a periodic O-lattice with a supposedly low energy?

Thisisthe essentially the same question we asked for crystals close to, but not exactly at a” low %"

orientation - but on a much higher level of abstraction and with the possibility to deal with it
quantitatively.

file:///L|/hyperscripts/def_en/kap_7/backbone/r7_3_4.html (5 of 5) [02.10.2007 16:17:13]



7.3.5 Pattern Shift and DSC Lattice

7.3.5 Pattern Shift and DSC Lattice

The General |dea of Pattern Element Conservation

In the CSL model of grain boundaries the DSC |attice was introduced to account for small deviations

from a perfect lattice coincidence orientation. It was the lattice of all translations of one of the crystals
that conserved the given CSL. Trandations other then those of the DSC lattice would destroy the
coincidence of lattice points.

The lattice vectors of the DSC lattice therefore could also be interpreted as the set of possible
Burgers vectors for dislocations allowed in a grain boundary without destroying the coincidence.

While the simple recipe for constructing the DSC lattice in the simple cases usually shown
(two-dimensional, cubic lattices) israther straight forward, it was neither mathematically justified,

nor isit immediately clear how it should be constructed in complicated cases.

The DSC lattice, in fact, comes from the O-lattice theory and was simply adopted to the "easy"
CSL model.

Obviously we now must ask ourselves: What happens to an O-lattice, particularly a periodic one, if we
trandate one of the crystals?

Thisis actually one of the more complicated questions to ask, especially for the rank of the
transformation matrix A < 3 (as we expect for grain boundaries).

We will not go into details here because in this rendering of O-lattice theory we omitted some more
mathematical points considering what happens to the O-lattice in agiven situation if you shift (=

trandate) crystal | or crystal 11. Or, in areversed situation, how you must shift crystal | or I1 if you
trandate the given O-lattice.

The first answer to the question aboveis:

In general (i.e. rank A = 3), the O-lattice is preserved, but shifted by some amount that depends on
the (arbitrary) magnitude of the trandlation of the crystal chosen.Thisisin contrast to the CSL,
where arbitrary shifts not contained in the DSC lattice will completely destroy the CSL.

This does not help, we obviously must find a more specific criterion than just conservation of the
O-latticein general in order to find specific trand ations that correspond to Burgers vectors of grain
boundary dislocations. We therefore ask more specifically:
What happens to the pattern el ements associated with every equivalence point in areduced periodic
O-lattice upon shifting one of the crystals?
Since we have seen (without proving it) that any O-point can be taken as the origin for the rotation
transforming crystal | into crystal I1; we should be able to shift lattice | by any vector pointing to an
equivalence point in the reduced O-lattice without changing pattern elements. In other words we
simply change the origin of the rotation (we only look at rotations in this examples).
The O-lattice then will aso be shifted by some other vector which can be calculated by employing

our basic equation

(I =ADre =T0)

The r; are the base vectors of the O-lattice if we take T; to be the set of base vectors of the crystal |
lattice. -
Now shift the crystal | lattice by some vector e connecting equivalence points, replacer; by ry =r0; +
Ar;, with Ar; = shift of the O-lattice for ashift e of the crystal |attice, and solve the equation for the Ar;.

WEell, lets not do it, but accept that there is a shift that can be cal culated.

On second thoughts, this must also be true for lattice I 1. We thus may also employ vectors that
trandlate lattice || by one of the vectors pointing to equivalence points in the reduced O-lattice.
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And on third thoughts (not entirely obvious), we also must be able to trand ate the O-lattice itself by
any vector that connects equivalence points. This requires that the O-lattice shifts by some vector -
it is the reverse problem from the one outlined above.
Thetrick isthat all those shifts may be different, and while they all produce the same general O-lattice,
there might be different pattern elements. But - there is afinite number of pattern elements and afinite
number of possible shifts.
Obvioudly, the set of al different configurations (distinguished by pattern elements) obtainable
defines the compl ete geometry of the particular boundary with the periodic O-lattice considered
because no configuration is special.
The set of al possible displacement vectors can be expressed as the translation vectorsin anew

kind of lattice, the "Complete Pattern Shift L attice", abbreviated by Bollmann as" DSC lattice",
that we encountered earlier (in amuch simpler form).

Unfortunately, it is not immediately obvious how to calculate the DSC lattice from O-lattice theory. In
fact, the respective chapter in Bollmanns book is particularly hermetic or obtuse.

Somewhat later (1979), Bollmann together with Pond gave the old abbreviation a new meaning:
"DSC" now stands for " Displacements which are Symmetry Conserving". But few people know
what exactly DSC stands for - the main thing is to understand the significance of the DSC lattice.

Some | llustrations

L ets see what the various displacements discussed above really produce if applied to a simple situation.
We take the (redrawn) example from Bollmanns book.
First, lets construct the possible set of pattern conserving translations by putting several reduced
O-lattice cellstogether (for the case of rotation around <100> of 39° 52,2, corresponding to the <
=5CSL).

The left part shows the rotation, yielding the O-lattice. Coinciding lattice points that are also
O-points are shown in green, the other O-pointsin red. On the right-hand side the repeated reduced
O-lattice is shown in the blue crystal.

Now lets displace the brown lattice by avector pointing form the green to the red equivalence point in
the above picture. Here is what you get.
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The O-lattice shifted down, and some new

Displasemert, of kinds of pattern elements appear. There
/O\ o lattice are no more or less special than the ones
- > in the picture above; both belong to the
AN
%

_compl ete structure of the boundary
<4\A‘/'¢\/ illustrated.
N

N
|~

L

|
LA\ X

NN Note that we also obtain new equivalence
N A [ Disptacementot points for the boundary (in the middle of
» @ Orfattice the lines defining the square lattices).

Now we shift the brown lattice by one of the vectors pointing to the new equivalence point. We
obtain yet another pattern element.

But that's it. The pattern elements shown
here are all there are (Try to prove that
yourself if you don't believeit).

]| Shift of
—| O lattice

We could now start to produce the DSC
lattice, but thiswill just give the same

kind of |attice we had in the simple CSL
case.

\</ Shift of brown

lattice

Instead we only note that there is a sufficiently clear procedure of how to create a DSC lattice for a
given periodic O-lattice, that is always applicable - even to phase boundaries (in principle; of course
only in principle).

In the next (and last) chapter, we will show how O-lattice theory now can be applied to large angle
grain boundaries and discuss briefly its merits and limits.

file:///L|/hyperscripts/def_en/kap_7/backbone/r7_3_5.html (3 of 3) [02.10.2007 16:17:14]



7.3.6 Large Angle Grain Boundaries and Final Points

7.3.6 Large Angle Grain Boundaries and Final Points

Application of O-Lattice Theory to Large Angle Grain Boundaries

The basic assumption is that an arbitrary grain boundary would prefer to be in a orientation
corresponding to a periodic O-lattice with a high density of equivalence points. Thisisafancy (i.e. more
general) way for saying that boundaries prefer to bein alow  orientation aswe did in the simple CSL
model.
Such a particular orientation can be achieved at the expense of generating some grain boundary
dislocations.
For asmall angle grain boundary we have seen that a cut of the boundary plane through the
O-lattice gives directly the geometry of the dislocation network (give or take some adjustments to
account for the particular dislocation properties).

The O-lattice was obtained (by calculations) relative to the two real crystals. Looking back, what
we did was to use one of the crystals as areference for the preferred state, the other one then
described the deviation of the boundary from the preferred state.
For large angle grain boundaries we now do exactly the same thing - except that the reference state is
now the periodic O-lattice that the boundary aspires to obtain.
The deviation of the boundary from this preferred state is then described by the O-lattice that comes
with the orientation that describes the actual boundary .
Thelogical consequence then isthat the geometry of the dislocation network necessary to obtain the
preferred state is the O-lattice of the two O-lattices described above - a so-called O2-lattice or second
order O-lattice.

That may sound a bit heavy, but it isreally straight forward if you think about it.

Itisalso clear - in principle - how we would cal culate the O2-lattice, but we are not going to look at
this.

If we now imagine a boundary plane cutting through our O2-lattice as before, we now must ask how
large the trandlation will be that the O-lattice "crystals' experience when a O2-lattice wall is crossed.

Thistranglation will be the Burgers vector of the second-order dislocation forming the grain boundary
dislocation network.

WEell, as you would have guessed, it must be atransation that conserves the underlying pattern of
the O-lattices, so the tranglation vector (= Burgers vector) is a vector from the DSC-lattice of one of
the primary O-lattices.

While our periodic reference O-lattice has a defined DSC lattice, the other one may (and in full
generality probably will) have a non-periodic O-lattice and thus does not have aDSC lattice. This
looks like a problem.

However, since O-lattices are continuous (and smooth) functions of the misorientation angle (which
the CSL is not), we know that the two O-lattices are rather similar, and we always can take the
DSC lattice of the periodic O-lattice in agood approximation. So thereis no real problem.

OK. We are done. That's (almost) al thereisto it.

The general recipe for constructing agrain boundary with a secondary is network is"clear". It goes
exactly along the lines we derived for small angle grain boundaires - only we work in "second order
O-lattice theory".

Thereverse is also possible: We have a general recipe for analyzing the structure found in ared
boundary.

It will just take a few months of studying the intricacies of the underlying math and some getting
used to the more trickier thoughts, and you can construct and analyze al kinds of boundaries on
your own.

But most likely, you won't. Thisis due to some (sad) facts of life that will be the last thing to discussin
this context.

Meritsand Limitations of O-L attice Theory
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The merits of Bollmanns theory are clear:

It nucleated alot of work on grain boundary structures and introduced the crucia concept of the
DSC lattice and its dislocations.

It was (and is) the mathematical frame work for tackling the kind of higher-level geometry that is
contained in interfaces between crystals. (It will be interesting to see if someone sometime tackles
the grain boundary structure between single quasi-crystals, which could be done by extending
O-lattice theory into a 6-dimensional space and then project the results back into three dimensional

space).
It allows to conceive and analyze more complex problems, where a CSL model is not sufficient.

However, there are serious problems and limitations, too.

The recipe for the proper choice of the one transformation matrix you should use out of many
possible onesis not always correct. It generally fails for (some) small angle tilt boundaries, where
the O-lattice theory would predict atwin-like structure with no dislocations - contrary to the
observations. It also fails for some other boundaries, casting some lingering doubt on the whole
thing.

It isstill too simple to account for real boundary structures even if the limitation referred to above
does not apply. Two examples might be mentioned.

1. Therigid body translations observed in many (twin-like) boundaries, especially in bcc lattices.

2. Tremendously complicated structures observed in crystal with more than one atom in the base of
the crystal - e.g. in Si. What happens (and was first observed and then analyzed by Bollmann) is
that dislocations in the DSC lattice may split into partial dislocations bounding a stacking fault in

the DSC lattice. While this effect may be incorporated into the O-lattice theory, it does not make it
easier.
Still, whereas newer theories concerned with the structures of grain boundaries do exist, noneis quite as
complete and mathematical as the O-lattice theory. A "final" theory has not yet been proposed
What remains for practical work is

The DSC lattice. Thisis certainly the most important outgrowth of the O-lattice theory. Grain
boundaries ssimply cannot be discussed without reference to the DSC lattice. For practical
importance it has al but eclipsed the O-lattice. As we have seen, it is (mostly) easily constructed

without going into heavy matrix algebra.
The systematic approach, always good for looking deeper into less clear situations.

The good feeling, that something can be done about taking a deep ook into grain boundary
structures from a theoretical point of view, even if there are some limitations and unclear points.
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8. Phase Boundaries

8.1 Misfit Dislocations

8.1.1 Modifications of the CSL Concept and Misfit Dislocations

The O-lattice theory fully accounts for the structure of phase boundaries, too - aslong as we look at two

crystalline phases, of course. It is, however still not easy to use (it iswaiting for someoneto turnit into a
user-friendly piece of software), and it can not answer afew specific question about the devel opment of
the structure whenever a phase boundary is formed.

’ So for phase boundaries, too, it is often more easy to think in terms of the simpler coincidence lattice -
but with a grain of salt. A few special points are:

... In general, there will be no suitable coincidence lattice at all, because the lattices are different and
their lattice constants are incommensurabl e (their quotient is an irrational number). In practice,
however, we do not know the lattice constants to an arbitrary degree of precision, and you will
always find some fitting relation.

.., Evenif thereisaCSL, it isnot necessarily the proper reference lattice. This can be seen from a
simple example: Two cubic crystals with lattice constants a; = 1 and a, = 1,05 (i.e. amisfit of 5%)

from a phase boundary:

Koinzidenz

— e—a =1

—»! ie—1a,=1,03

’ We have a perfect two-dimensional CSL structure (2,4 = 20 would hold for 2 dimensions),

Note that we can have situations (like even Z numbers) which are simply not possible for grain
boundaries, where the lattice constants are the same by definition.

’ It is much more sensible to describe this phase boundary asa 2 = 1 boundary with superimposed phase
boundary dislocations (which we practically always will call misfit dislocations) as shown below,
because thisis usually an energetically better situation than a 2,4 = 20 (or whatever) boundary with no
dislocations.

., The misfit dislocations in this case are more or less lattice dislocations of the crystals - but that does
not mean that DSC lattice dislocations never occur in phase boundaries!

— le—a =1 -— Misfit dislocations —

DA

—» 4—a; =103
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’ Misfit dislocations compensate for differences in the | attice constants by concentrating the misfit in
one-dimensional regions - the dislocation lines.

.. Between the dislocation lines the interface is coher ent; a phase boundary with misfit dislocationsis
called semi-coherent.

.. Misfit dislocations - in contrast to general grain boundary dislocations - must have an edge
component that accounts for the lattice constant mismatch

’ Whereas the O-lattice theory as applied to phase boundaries allows phase boundary dislocationsin
genera (of which misfit dislocations are only a subset), "simple" misfit dislocations are the dominant
defectsin technologically important man-made phase boundaries.

.. Misfit dislocations are not restricted to boundaries between two chemically different types of
materials. Silicon heavily doped with, e.g., Boron, has a slightly changed lattice constant and thus
formally can be sen as adifferent phase. The rather ill defined interface between a heavily doped
region and an undoped region thus may and does have misfit dislocations, an exampleisgivenin

the illustration.

.., The mere existence of misfit dislocations coupled with their usually detrimental influence on
electronic properties is the reason why many "obvious' devices do not exist at al (e.g.
optoelectronic GaAs structures integrated on a Si chip), and others have problems. The aging of
Laser diodes, e.g., may be coupled to the behavior of misfit dislocations in the many phase
boundaries of the device.

.. Optoelectronicsin general practically aways involves having phase boundaries, e.g. devices like

Lasers, LEDs, aswell asall multi quantum well structures. A very careful consideration of misfit
and misfit dislocations is aways needed and some special process steps are often necessary to avoid

these defects.

’ However, not every (Z = 1) phase boundary with some misfit between the partners contains misfit
dislocations - provided one of the phases consists of athin layer on top of the other phase. Only if the
thickness of the thin-layer phase exceeds a critical value, misfit dislocations will be observed. It is easy
to understand why thisis so:

.., For thin layers, it may be energetically more favorable to deform the layer elastically, so that a
perfect match to the substrate layer is achieved. Thetotal elastic energy contained in the "strained
layer" scales with the thickness of the layer and the expenditure in elastic energy below acritical
thickness for an epitaxial layer may be smaller than the energy needed to introduce misfit
dislocations.

’ Thisisasituation not dealt with in the O-lattice theory or its simple CSL version. A new theory is
needed.

8.1.2 Energy of Misfit Dislocations and Critical Thickness

’ The critical thickness for the introduction of misfit dislocations can be obtained by equating the energy
contained in amisfit dislocation network with the elastic energy contained in a strained layer of
thickness h.

... Since the elastic energy increases directly with h, whereas the energy contained in the dislocation
network increases only very weakly with h, the thickness for which both energies are equal isthe
critical thickness h.. Thicker layers are energetically better off with a dislocation network, thinner

layers prefer elastic distortion.
.., This computation was first done by Frank and van der Mervein 1963; the resulting Frank and
van der Merve formula became quite famous.

Somewhat later in 1974 M atthews and Blakesl ee reconsidered the situation and looked at the forces
needed to move afew pre-existing dislocations into the interface in order to form the misfit dislocation
network. They obtain the same formulafor the critical thickness as van der Merve (i.e. the equilibrium
situation), but their treatment also allows to consider the kinetics of the process to some extent (i.e. how
the network is formed) and is therefore widely used.
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8.1.1 Phase Boundaries

.. We are looking at the situation retrospectively by studying an article of the possibly most famous
TEM and defect expert, Peter Hirsch from Oxford University, or, to be precise, Sir Peter ashe
must be called after his nobilitation by Elizabeth |, Queen of England.

.. Thisisto show that - honorwise - a defect expert can go just asfar as arock star (severa of which
have been knighted by the queen - most famous the Beatles). Moneywise, however, itisa
completely different matter.

We use parts of his article printed in the Proceedings of the 2nd International Conference on

Polycrystalline Semiconductors (Schwabisch Hall, Germany, 1990, p. 470). Do look it up - it is part
of the lecture!

’ Asyou saw, great minds sometimes make great steps and are not immune to small errors! If you didn't
see that, consider:

.. How exactly do you get eq. 1?
Why is the strain for minimum energy calculated in eg. 3 equal to the unrelaxed elastic strain at the
point of the introduction of dislocations?
Whét is h, the thickness of the layer, doing in an equation for the critical thickness h (eq. 5)? After
all, the critical thickness can not possibly depend on the thickness itself.
’ WEell, if you want to know, turn to the annotated version of Sir Peters paper.

’ Still, Sir Peter got it right in principle, and his derivation of the critical thicknessis short and most
elegant. The final formulafor the critical thicknessh, is

b e-hg
In

he = :
8ri-f-(1 + v) ro

With b = Burgers vector of the misfit dislocations (actually only their edge component in the plane
of theinterface), f = misfit parameter, i.e Aa/a, e = e = 2,7183... = base of natural logarithms, and
ro = core radius of the dislocations.

.. This transcendental equation may be roughly approximated by

’ L ets see what the calculations tell us for real phase boundaries (for ab value of 0.376 nm (which applies
to Si)). We note that misfit dislocations are only to be expected if the layer thickness h exceeds the
critical value he.
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8.1.1 Phase Boundaries
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... For amisfit of 1% the critical thicknessis about 4 nm - not much at all!

’ This situation provides for many technological problems, especially in semiconductor technology. It

imposes severe limits on "heterojunctions”, i.e. electronic junctions between two materials because a
misfit dislocation network will invariably "kill" your device - if not immediately, somewhat later (which
is often worse!).

... Looking at common technical semiconductors, we realize that we have major problemsin making
heterojunctions:

T T T T T T T T T

T
[ Zns
L -V i-vi
direct gap —
X-gap S— 350 nin
Ir ZnSe L-gap — -
] Viable
range
=)
X
§ 50 nm
=
2
2
w — L3pm

" LS jun

.. Misfits between two materials tends to be large (not even considering Si with alattice constant of a
= 0,532 nm), and dislocation free interfaces do not come easy, if at all.

.. A large group of researchers has been (and still is) looking for ways to beat the critical thickness
limitations. There are many tricks (the link contains afew), but hard work is needed just as much as
some luck and good ideas. A particularly clever recent idea known under the heading of
"compliant substrates’ is described in an advanced module.

’ Experiments confirm the theory. Very thin epitaxial layers of a second phase do not show dislocationsin
the interface, but with increasing thickness misfit dislocations will appear.

.. Considering that misfit dislocations are usually unwanted but that they must appear with increasing
layer thickness - however not out of thin air - we ask an important question:
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8.1.1 Phase Boundaries

’ Exactly how are misfit dislocations produced and incorporated into the interface if the critical thickness
isreached. More to the point: How can | prevent this nucleation and migration process?

.., Suffice it to say that while this question has not been fully answered, there are many ways and
tricks to keep misfit dislocations from appearing at the earliest possible moment.

Theissueis sufficiently important in optoel ectronics to merit more discussion. More information to
this point can be found in various modules of the Hyperscript " Semiconductors'.

8.1.3 Other Defects in Phase Boundaries

’ Even coherent phase boundaries can still contain other defects besides misfit dislocations (not to
mention incoherent phase boundaries). In particular, we must expect:

... Dislocation networks besides the misfit dislocations that compensate for small tilt and twist
components in analogy to the small angle grain boundaries.

Seps associated with dislocations (so-called incoherent steps) in analogy to the steps encountered
in grain boundaries.

... Coherent steps (without any dislocation character) as something new.

’ After all, the surface of a substrate on which we deposit alayer of a second phase will, in general, not be
atomically flat. Steps thus must be expected to be an integral part of the phase boundary. We will
examine some examples for thisin the next subchapter.
’ Next, it isimportant to realize that semicoherent phase boundaries can have other CSL relation besides
> =1, inparticular Z = 3, but other values, too.
.. As the most important example, consider a hexagonal |attice matched to the {111} plane of afcc
lattice. It isfound to beinaZ = 3 relationship, easily seen if you compare the stacking sequencesin

the picture below:
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., The ACACACA... stacking sequence of the hexagonal lattice fits right on the ABCABCA..

stacking sequence of the fcc lattice on a{111} plane. The Z = 3 relationship is clearly visible; it is
indicated by red dots and lines.

... There are of course more complex geometries - if the CSL concept is not applicable; the O-lattice
concepts has to be used.

’ Sorting out the various types of possible defectsisno longer an easy task. The interpretation of TEM
micrographs may become quite involved.

., Some examples will be discussed in the case studies in the next subchapter.
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8.2.1 Case Studies

8.2 Case Studies
8.2.1 Ni Silicides

’ We will look in some detail on the system Si - silicide - metal, where many phase boundaries can be

observed. The basic experiment consists of depositing ametal (here Ni) on Si (either in a{100} or {111}
orientation), and induce some reaction by heating.

... Three different Ni-silicides will form consecutively:

Evaporated Ni layer

Ni Anneal [T
200°C i
Si /
600°C

—i
800°C

’ Altogether five different phase boundaries may be encountered, some of which are shown in the picture
above:

Si - Ni,

Si - Ni»,Si and Ni,Si - Ni,

S - NiSi and NiSi - Ni,Si,

Si - NiSi,, and NiSi, - NiSi.
’ Major findings are:

.. The interface between Si and Ni does not really exist because immediately after the (room
temperature) evaporation, athin Ni,Si-silicide layer forms between the Si and the Ni.

.. The Ni,S layer is polycrystalline; the interface between Si and Ni,Si seemsto be incoherent - i.e. if
thereisany structureit is not observed with "normal” TEM.

’ The interface between {111} Si and NiSi is epitaxial, however, and thus semicoherent against all
expectations:

.., NiSi isreported to crystallize in an orthorhombic lattice; on {111} Si substrates, however, a

hexagonal lattice is observed (which can be cobtained from an orthorhombic lattice by slight
adjustments of the lattice parameters).

.., The misfit is extremely large (ca. 15%) and would require a distance of 0,6 nm for b = a/2<110>
misfit dislocations. Such a small spacing is usually considered to be too small to be meaningful -
epitaxial relationships thus should not exist. The diffraction pattern, however, indicates a clear
epitaxial relationship (with abit of polycrystalinity asindicated by the rings):
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.. While no structure can be seen in conventional TEM, high-resolution TEM shows pronounced
misfit dislocations relieving some of the stress at a spacing of about 1,6 nm. Thisis one of the
densest misfit dislocation networks ever observed. The ending lattice planes are indicated by the
edge dislocation symbol somewhat above the actual interface plane.

’ The most interesting phase is NiSi,; it isthe final product after sufficient annealing at 800 °C.

NiSi, crystallizes in the cubic CaF, - structure with alattice constant that is only 0,3% smaller than
that of Si.
... We thus can expect an epitaxial relationship with a misfit dislocation network at a spacing

b b

p = b- =
(ae—ay)/a,, 0,003

.. With ag; = 0,54 nm and b = a/2<110> = 0,382 nm we would expect a network with a spacing of
about 130 nm.
.., What we see for an interface on a{111} plane looks like this:
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8.2.1 Case Studies

., Thislooks rather interesting. We seem to have a simple hexagonal network of dislocations, but we
see some additional features: "Blackish" areas and an island with rather coarser structures
embedded in a sea of something with a possible hexagonal symmetry.

’ The reasons for these complications are two peculiarities of thisinterface, which can also be found in
similar systems; in particular in the Si - CoSi, interface.

First, it "likes' to be on {111} -planes. This leads to heavy facetting if the Ni layer is deposited on a
Si {100} plane, but also to some facetting on {111}. This can be seen best in cross-section; an
exampleisgiven in theillustration. We must expect that the accommodation of steps will introduce
irregularities into the network.
Second, the interfaceismostly not ina = 1 relation, i.e. with a direct continuation of the lattices,
but ina = 3 relation. This means that the NiSi, is twinned with respect to the substrate. An
overview picture is shown in the link. This somewhat surprising result can be obtained from a

careful contrast analysis of the network with micrographs taken at higher magnifications. The
network then looks like this:
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8.2.1 Case Studies

Shown isone of the "isands" in a sea of regular hexagonal dislocations. Its structure looks
somewhat familiar: The arrows point to extended stacking fault knots as in the case of the small
angle twist grain boundary on {111} in Si.

., But in contrast to the network in the small angle twist boundary, all dislocations now are edge

dislocations; as expected for misfit dislocations. The distance is also what would be expected for a
almost fully relaxed layer of NiSi,.

’ The question is, of course, why thismix of 2 = 1 and Z = 3 relations? Asin the case of the low angle
twist boundary encountered before, nobody knows for sure. Obviously, the energy balance is rather

similar for the two cases.
Very similar interfaces have been observed in the case of S - CoSi,, interfaces, which, except for a
dightly larger misfit, have essentially the same geometry.

’ Despite the structural similarity to the small angle grain boundaries, the phase boundaries add new
features and open questions. To get more insights, we will now discuss the case of the interface between
(cubic) Si and (hex.) Pd,Si.
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8.2.2 Case Study for Pd Silicides

’ If Pd instead of Ni is evaporated on aclean Si surface, hexagonal Pd,Si (a = 0,653 nm, ¢ = 0,344 nm)
develops around 200°C - 300°C. Increasing the annealing temperatures produces no new phases.

., The misfit of the hexagonal {001} planeto aS {111} planeis 1,8% ; we can expect an epitaxial
relationship with a misfit dislocation network at a spacing of about 10 nm. Thisis around the
resolution limit of TEM in aregular contrast mode, so we have to resort to HRTEM and
cross-sectional specimen.

., A HRTEM image of the interface is shown below (This picture from 1980 is of historical interest,
too: It was, to the best of my knowledge, the first HRTEM picture ever obtained from a phase
boundary).

’ We clearly have an epitaxial layer of Pd,Si. No ending lattice fringes denoting misfit dislocations are
unambigoudly visible. Therefore a Burgers circuit has been drawn, somewhat analogous to the
procedure used to obtain Franks formula. It goes up in the Pd,Si, then to the left crossing 90 lattice

fringes, back to the boundary, 90 fringes to the right and up to the boundary again. It does not close,
although it is clear that it would have closed on a perfectly flat and misfit-dislocation free interface.

.. Does this mean that the phase boundary contains misfit dislocations?

.. Thisisnot clear. We may have dislocations in the interface, but we certainly have steps as can be
seen directly. We now have to pay some attention to the relationship of dislocations and steps, their
imagesinaHRTEM picture, and their consequences for a Burgers circuit.

’ Thiswill lead usinto new and quite complicated territory. We will consider the relationship between
steps and dislocations only for the example of hexagonal lattices on cubic lattices, or, more generaly,
for Z = 3 relations. Thiswill be sufficient to gain an idea of the added compl exity.
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8.3 Steps in Interfaces

8.3.1 The Relation Between Steps and Dislocations in £ = 3 Boundaries

’ Playing with models of a perfectly fitting phase boundary between a hexagonal and a cubic lattice, one

realizes quickly that steps can be incorporated without problems and without dislocations as long as the
step height comes in multiples of 3 (in units of the tranglation vectors of the CSL). This, together with
some other cases, is shown below:

Lot

S -1

|
|
1
l
\__

) my/a
ol

.. The left two pictures show pure steps (or coherent steps). For ease of interpretation, some lattice
planes of the DSC lattice are shown in blue; ending lattice planes of the DSC lattice are red. Ending
lattice fringes, as seen on aHRTEM micrograph, are indicated in light blue - note that they are not
the same thing as lattice planes. The phase boundary itself is shown in light green.

.. Included in the drawing are also two pure DSC lattice dislocations (middle pictures). They are true
dislocations because they can be constructed with the Volterra method as demonstrated before, and
they have the 1/r stressfield that is ahallmark of dislocations. Sometimes they are called
coherency dislocations.

., Finally, amix of pure dislocations and pure steps is shown on the right. It is evident that steps going
just one plane up or down must be amix of pure steps and pure dislocations. The sameis true for
steps going 4 planes up or down and so on. These dislocations are sometimes called
anti-coherency dislocations.

.. Note that there is no way of having a combination of pure steps and dislocations with step height
zero.

’ An unexpected property emerges: Pur e steps (sometimes also called coher ent ledges) show ending
lattice fringesin aHRTEM micrograph, whereas true dislocations in this case are not associated with
ending lattice fringes.

.. Where does that leave us? I's Franks formula, which after all counted Burger vectorsin acircuit not
unlike the one shown before, not applicable to non-planar boundaries? Why can we see ending
lattice fringesina TEM picture and there is no dislocation?

... WEell, ending lattice fringes (again note we call it lattice fringe on purpose) are not lattice planes,
and at agrain- or phase boundary all |attice planes of one kind end and some of a new kind start.
The fact that some visible fringes appear to be continuousin a"fuzzy" projection of the lattices, has
no particular meaning in itself. Of course, one lattice plane ending in one crystal may giveriseto a

lattice fringe ending on a micrograph, too, and thus signify an edge dislocation, but this must not be
generalized.

We may, however, make an important generalization of a different kind: A semi-coherent phase or grain
boundary, in general, needs at least two qualitatively different kinds of defectsin its interface:

.. Pure DSC-lattice dislocations (generally associated with an intrinsic step), and
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.. Pure steps (without dislocation character, i.e. without along range stress field).

’ In general both defects are required as we will see if we now compose a (hexagonal) dislocation network
inaX = 3 boundary.
.. Whereas the dislocation network has a perfect threefold rotational symmetry, the boundary is less

symmetric. This can be seen when we consider the steps introduced by the dislocations (use the
picture above), too:

-

.. As soon as we defined the line- and Burgers vectors, we realize that the steps associated with pure
dislocation are always the same: Looking in the line direction, crossing a pure dislocation would
always lead two steps down in this example. If we start a closed circuit at the hexagon labelled
"(level) 1" and go across the green dislocation, we end up two atomic planes down on level 3. The
same happens if we now cross the blue dislocation; we are down to level 5.

... However, in closing the circuit, we must necessarily come up to level 1 again, Thisis only possible
if the dark red dislocations break the symmetry and contain two steps (—2 + 6 = 4). Thus we go two
levels down and 6 levels up, which isjust right.

’ Thisfeature, which is clearly a general feature of all boundaries, opens up awhole new can of worms.

... There is more than one way to combine pure steps and pure dislocations to create a network that
satisfies the requirements for accommodating misfit (this needs the dislocations) and to compensate
for the steps introduced by the dislocations (this needs pure steps).

... The image of a given boundary in cross-sectional HRTEM can look very different, depending on
what kind of possible configuration is cut which way. Lattice fringes may end in several different
ways.

... The closing failure of a Burgers circuit that counts lattice fringes around a large part of an interface
thus cannot be considered as a net count of dislocation Burgers vectors. Combined with a net count
of the stepsin the interface, however, it may be useful.

... The following graphic illustrates these points
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’ Shown are two possible combinations of dislocations and stepsin % = 3 boundaries (of any kind).

Dislocations in combination with a coherent step are indicated in bold lines; the numbersin the
hexagons indicate the level of the boundary

.. Two possible geometries are shown in the upper left-hand corner and the lower right-hand corner
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.. Four cross-section through the dislocation/step network are drawn in together with their schematic
imagein HRTEM. Ending lattice fringes are indicated in light blue (assuming without justification
that the image of dislocation/step combinations that are inclined with respect to the electron beam
add no further complications).

’ It becomes clear that the interpretation of an HRTEM image can be a demanding task which will not
necessarily give an unambiguous answer. Y ou may try your skills at the picture in the illustration.

’ But we are still not done with the discussion of the intrinsic geometry of asimple > = 3 boundary. Even
if we assume that we have a dislocation/step network of adefined kind (e.g. the one from the upper
left-hand corner of the above drawing) and that the boundary is flat apart from the ups and downs of the
dislocations, we must expect an added complication:

.. Since the dislocationg/step network most likely formed in small patches and then spreads out,

individual patches may be out of "synch", i.e. whenever they meet they will not fit together. Thisis
illustrated below
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... Dislocations in combination with a coherent step are shown in bold; the color now denotes if the
step goes up or down as seen from the inside of the hexagons completely enclosed by "bold"
dislocations. The dislocations/step network on the left and right side are identical, but displaced
relative to each other by one hexagon.

.., Along the white line, they obviously don't match. We would need dislocations with a step height of
zero, which as we have seen before, do not exist in this geometry.

’ The only way out is to postulate a new kind of defect, some kind of stacking fault in the dislocation/step
lattice. To the best of my knowledge, such adefect has not yet be named or discussed in detail -
although it is clearly a necessary feature of general phase- or grain-boundaries.

.. This servesto illustrate that the last word about structural aspects of defectsin crystal has not yet
comein. One may ask, of course, if esoterica like the dislocation/step network considerations are of
any importance. The answer is. \Who knows?

.. Considering however, that many materials (including natural minerals) are full of phase and grain
boundaries, that many properties of theses boundaries are directly linked to their structure and that
not much is known about the atomic structure of non-trivial boundaries, it is not totally unrealistic
to expect that research will go on.

’ In the next (and last) subchapter we will briefly look at some more questionsin relation to phase
boundaries.
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8.3.2 Open Questions

’ The final conclusion in the phase boundary chapter issimple: Thereis still much to do! Some open
questions will just be mentioned:

... If the phase boundary moves into the interior of some material in areactive process like silicide
formation, the phase boundary dislocations must climb. How do they do this?

.. Supposedly, the climb of phase boundary dislocations needs a specified current of point defects
(whatever is needed to accommodate the climb rate given by the speed of the advancing interface).
Will the point defects assisting climb affect the kinetics of the phase boundary movement? How?

. Does the hexagonal dislocation network have a preferred direction. How can this be proven?

. What kind of defect forms the boundary between different network domains?

’ Many more questions can be formulated to understand just the structural properties of interfacesin
genera. But herel stop. | have done my share of the work. Now it is up to you.
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